@article{HerzschuhBoehmerLietal.2022, author = {Herzschuh, Ulrike and B{\"o}hmer, Thomas and Li, Chenzhi and Cao, Xianyong and H{\´e}bert, Rapha{\"e}l and Dallmeyer, Anne and Telford, Richard J. and Kruse, Stefan}, title = {Reversals in temperature-precipitation correlations in the Northern Hemisphere extratropics during the Holocene}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {22}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2022GL099730}, pages = {11}, year = {2022}, abstract = {Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature-precipitation correlations. Our analyses of Holocene proxy-based temperature-precipitation correlations and hydrological sensitivities from 2,237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy-based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid-latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature-precipitation correlations in the eastern North American and European mid-latitudes from the early to mid-Holocene that mainly related to slowed down westerlies and a switch to moisture-limited convection under a warm climate. Our palaeoevidence of past temperature-precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging.}, language = {en} } @article{AndreevNazarovaLenzetal.2022, author = {Andreev, Andrei and Nazarova, Larisa B. and Lenz, Marlene M. and B{\"o}hmer, Thomas and Syrykh, Ludmila and Wagner, Bernd and Melles, Martin and Pestryakova, Luidmila A. and Herzschuh, Ulrike}, title = {Late Quaternary paleoenvironmental reconstructions from sediments of Lake Emanda (Verkhoyansk Mountains, East Siberia)}, series = {Journal of quaternary science : JQS}, volume = {37}, journal = {Journal of quaternary science : JQS}, number = {5}, publisher = {Wiley}, address = {New York, NY [u.a.]}, issn = {0267-8179}, doi = {10.1002/jqs.3419}, pages = {884 -- 899}, year = {2022}, abstract = {Continuous pollen and chironomid records from Lake Emanda (65 degrees 17'N, 135 degrees 45'E) provide new insights into the Late Quaternary environmental history of the Yana Highlands (Yakutia). Larch forest with shrubs (alders, pines, birches) dominated during the deposition of the lowermost sediments suggesting its Early Weichselian [Marine Isotope Stage (MIS) 5] age. Pollen- and chironomid-based climate reconstructions suggest July temperatures (T-July) slightly lower than modern. Gradually increasing amounts of herb pollen and cold stenotherm chironomid head capsules reflect cooler and drier environments, probably during the termination of MIS 5. T-July dropped to 8 degrees C. Mostly treeless vegetation is reconstructed during MIS 3. Tundra and steppe communities dominated during MIS 2. Shrubs became common after similar to 14.5 ka BP but herb-dominated habitats remained until the onset of the Holocene. Larch forests with shrub alder and dwarf birch dominated after the Holocene onset, ca. 11.7 ka BP. Decreasing amounts of shrub pollen during the Lateglacial are assigned to the Older Dryas and Younger Dryas with T-July similar to 7.5 degrees C. T-July increased up to 13 degrees C. Shrub stone pine was present after similar to 7.5 ka BP. The vegetation has been similar to modern since ca. 5.8 ka BP. Chironomid diversity and concentration in the sediments increased towards the present day, indicating the development of richer hydrobiological communities in response to the Holocene thermal maximum.}, language = {en} } @article{AndreevRaschkeBiskabornetal.2021, author = {Andreev, Andrei and Raschke, Elena and Biskaborn, Boris and Vyse, Stuart Andrew and Courtin, J{\´e}r{\´e}my and B{\"o}hmer, Thomas and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Late Pleistocene to Holocene vegetation and climate changes in northwestern Chukotka (Far East Russia) deduced from lakes Ilirney and Rauchuagytgyn pollen records}, series = {Boreas : an international journal of quaternary research}, volume = {50}, journal = {Boreas : an international journal of quaternary research}, number = {3}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0300-9483}, doi = {10.1111/bor.12521}, pages = {652 -- 670}, year = {2021}, abstract = {This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae similar to 16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared similar to 15.9 cal. ka BP, and became dominant after similar to 15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after similar to 13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum similar to 11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant similar to 11.8-11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between similar to 10.6 and 7 cal. ka BP. Vegetation became similar to the modern after similar to 7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.}, language = {en} } @article{LiPostlBoehmeretal.2022, author = {Li, Chenzhi and Postl, Alexander K. and B{\"o}hmer, Thomas and Cao, Xianyong and Dolman, Andrew M. and Herzschuh, Ulrike}, title = {Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0)}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {3}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-14-1331-2022}, pages = {1331 -- 1343}, year = {2022}, abstract = {We present a chronology framework named LegacyAge 1.0 containing harmonized chronologies for 2831 pollen records (downloaded from the Neotoma Paleoecology Database and the supplementary Asian datasets) together with their age control points and metadata in machine-readable data formats. All chronologies use the Bayesian framework implemented in Bacon version 2.5.3. Optimal parameter settings of priors (accumulation.shape, memory.strength, memory.mean, accumulation.rate, and thickness) were identified based on information in the original publication or iteratively after preliminary model inspection. The most common control points for the chronologies are radiocarbon dates (86.1 \%), calibrated by the latest calibration curves (IntCal20 and SHCal20 for the terrestrial radiocarbon dates in the Northern Hemisphere and Southern Hemisphere and Marine20 for marine materials). The original publications were consulted when dealing with outliers and inconsistencies. Several major challenges when setting up the chronologies included the waterline issue (18.8\% of records), reservoir effect (4.9 \%), and sediment deposition discontinuity (4.4 \%). Finally, we numerically compare the LegacyAge 1.0 chronologies to those published in the original publications and show that the reliability of the chronologies of 95.4\% of records could be improved according to our assessment. Our chronology framework and revised chronologies provide the opportunity to make use of the ages and age uncertainties in synthesis studies of, for example, pollen-based vegetation and climate change. The LegacyAge 1.0 dataset, including metadata, datings, harmonized chronologies, and R code used, is openaccess and available at PANGAEA (https://doi.org/10.1594/PANGAEA.933132; Li et al., 2021) and Zenodo (https://doi.org/10.5281/zenodo.5815192; Li et al., 2022), respectively.}, language = {en} }