@article{HohensteinKliegl2014, author = {Hohenstein, Sven and Kliegl, Reinhold}, title = {Semantic preview benefit during reading}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {40}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {1}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/a0033670}, pages = {166 -- 190}, year = {2014}, abstract = {Word features in parafoveal vision influence eye movements during reading. The question of whether readers extract semantic information from parafoveal words was studied in 3 experiments by using a gaze-contingent display change technique. Subjects read German sentences containing 1 of several preview words that were replaced by a target word during the saccade to the preview (boundary paradigm). In the 1st experiment the preview word was semantically related or unrelated to the target. Fixation durations on the target were shorter for semantically related than unrelated previews, consistent with a semantic preview benefit. In the 2nd experiment, half the sentences were presented following the rules of German spelling (i.e., previews and targets were printed with an initial capital letter), and the other half were presented completely in lowercase. A semantic preview benefit was obtained under both conditions. In the 3rd experiment, we introduced 2 further preview conditions, an identical word and a pronounceable nonword, while also manipulating the text contrast. Whereas the contrast had negligible effects, fixation durations on the target were reliably different for all 4 types of preview. Semantic preview benefits were greater for pretarget fixations closer to the boundary (large preview space) and, although not as consistently, for long pretarget fixation durations (long preview time). The results constrain theoretical proposals about eye movement control in reading.}, language = {en} } @article{LuoYanZhou2013, author = {Luo, Yingyi and Yan, Ming and Zhou, Xiaolin}, title = {Prosodic boundaries delay the processing of upcoming lexical information during silent sentence reading}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {39}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {3}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/a0029182}, pages = {915 -- 930}, year = {2013}, abstract = {Prosodic boundaries can be used to guide syntactic parsing in both spoken and written sentence comprehension, but it is unknown whether the processing of prosodic boundaries affects the processing of upcoming lexical information. In 3 eye-tracking experiments, participants read silently sentences that allow for 2 possible syntactic interpretations when there is no comma or other cue specifying which interpretation should be taken. In Experiments 1 and 2, participants heard a low-pass filtered auditory version of the sentence, which provided a prosodic boundary cue prior to each sentence. In Experiment 1, we found that the boundary cue helped syntactic disambiguation after the cue and led to longer fixation durations on regions right before the cue than on identical regions without prosodic boundary information. In Experiments 2 and 3, we used a gaze-contingent display-change paradigm to manipulate the parafoveal visibility of the first constituent character of the target word after the disambiguating position. Results of Experiment 2 showed that previewing the first character significantly reduced the reading time of the target word, but this preview benefit was greatly reduced when the prosodic boundary cue was introduced at this position. In Experiment 3, instead of the acoustic cues, a visually presented comma was inserted at the disambiguating position in each sentence. Results showed that the comma effect on lexical processing was essentially the same as the effect of prosodic boundary cue. These findings demonstrate that processing a prosodic boundary could impair the processing of parafoveal information during sentence reading.}, language = {en} } @article{YanZhouShuetal.2015, author = {Yan, Ming and Zhou, Wei and Shu, Hua and Kliegl, Reinhold}, title = {Perceptual span depends on font size during the reading of chinese sentences}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {41}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {1}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/a0038097}, pages = {209 -- 219}, year = {2015}, abstract = {The present study explored the perceptual span (i.e., the physical extent of an area from which useful visual information is extracted during a single fixation) during the reading of Chinese sentences in 2 experiments. In Experiment 1, we tested whether the rightward span can go beyond 3 characters when visually similar masks were used. Results showed that Chinese readers needed at least 4 characters to the right of fixation to maintain a normal reading behavior when visually similar masks were used and when characters were displayed in small fonts, indicating that the span is dynamically influenced by masking materials. In Experiments 2 and 3, we asked whether the perceptual span varies as a function of font size in spaced (German) and unspaced (Chinese) scripts. Results clearly suggest perceptual span depends on font size in Chinese, but we failed to find such evidence for German. We propose that the perceptual span in Chinese is flexible; it is strongly constrained by its language-specific properties such as high information density and lack of word spacing. Implications for saccade-target selection during the reading of Chinese sentences are discussed.}, language = {en} } @article{SchottervonderMalsburgLeinenger2019, author = {Schotter, Elizabeth Roye and von der Malsburg, Titus Raban and Leinenger, Mallorie}, title = {Forced Fixations, Trans-Saccadic Integration, and Word Recognition}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {45}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {4}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/xlm0000617}, pages = {677 -- 688}, year = {2019}, abstract = {Recent studies using the gaze-contingent boundary paradigm reported a reversed preview benefit- shorter fixations on a target word when an unrelated preview was easier to process than the fixated target (Schotter \& Leinenger, 2016). This is explained viaforeedfixatiotzs-short fixations on words that would ideally be skipped (because lexical processing has progressed enough) but could not be because saccade planning reached a point of no return. This contrasts with accounts of preview effects via trans-saccadic integration-shorter fixations on a target word when the preview is more similar to it (see Cutter. Drieghe, \& Liversedge, 2015). In addition, if the previewed word-not the fixated target-determines subsequent eye movements, is it also this word that enters the linguistic processing stream? We tested these accounts by having 24 subjects read 150 sentences in the boundary paradigm in which both the preview and target were initially plausible but later one, both, or neither became implausible, providing an opportunity to probe which one was linguistically encoded. In an intervening buffer region, both words were plausible, providing an opportunity to investigate trans-saccadic integration. The frequency of the previewed word affected progressive saccades (i.e.. forced fixations) as well as when transsaccadic integration failure increased regressions, but, only the implausibility of the target word affected semantic encoding. These data support a hybrid account of saccadic control (Reingold, Reichle. Glaholt, \& Sheridan, 2012) driven by incomplete (often parafoveal) word recognition, which occurs prior to complete (often foveal) word recognition.}, language = {en} }