@article{SchaeferBittmann2023, author = {Schaefer, Laura and Bittmann, Frank}, title = {The adaptive force as a potential biomechanical parameter in the recovery process of patients with long COVID}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2075-4418}, doi = {10.3390/diagnostics13050882}, pages = {25}, year = {2023}, abstract = {Long COVID patients show symptoms, such as fatigue, muscle weakness and pain. Adequate diagnostics are still lacking. Investigating muscle function might be a beneficial approach. The holding capacity (maximal isometric Adaptive Force; AFisomax) was previously suggested to be especially sensitive for impairments. This longitudinal, non-clinical study aimed to investigate the AF in long COVID patients and their recovery process. AF parameters of elbow and hip flexors were assessed in 17 patients at three time points (pre: long COVID state, post: immediately after first treatment, end: recovery) by an objectified manual muscle test. The tester applied an increasing force on the limb of the patient, who had to resist isometrically for as long as possible. The intensity of 13 common symptoms were queried. At pre, patients started to lengthen their muscles at ~50\% of the maximal AF (AFmax), which was then reached during eccentric motion, indicating unstable adaptation. At post and end, AFisomax increased significantly to ~99\% and 100\% of AFmax, respectively, reflecting stable adaptation. AFmax was statistically similar for all three time points. Symptom intensity decreased significantly from pre to end. The findings revealed a substantially impaired maximal holding capacity in long COVID patients, which returned to normal function with substantial health improvement. AFisomax might be a suitable sensitive functional parameter to assess long COVID patients and to support therapy process}, language = {en} } @article{SchaeferBittmann2023, author = {Schaefer, Laura and Bittmann, Frank}, title = {Case report}, series = {Frontiers in medicine}, volume = {9}, journal = {Frontiers in medicine}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-858X}, doi = {10.3389/fmed.2022.879971}, pages = {10}, year = {2023}, abstract = {The increasing prevalence of Long COVID is an imminent public health disaster, and established approaches have not provided adequate diagnostics or treatments. Recently, anesthetic blockade of the stellate ganglion was reported to improve Long COVID symptoms in a small case series, purportedly by "rebooting" the autonomic nervous system. Here, we present a novel diagnostic approach based on the Adaptive Force (AF), and report sustained positive outcome for one severely affected Long COVID patient using individualized pulsed electromagnetic field (PEMF) at the area C7/T1. AF reflects the capacity of the neuromuscular system to adapt adequately to external forces in an isometric holding manner. In case, maximal isometric AF (AFiso(max)) is exceeded, the muscle merges into eccentric muscle action. Thereby, the force usually increases further until maximal AF (AFmax) is reached. In case adaptation is optimal, AFiso(max) is similar to 99-100\% of AFmax. This holding capacity (AFiso(max)) was found to be vulnerable to disruption by unpleasant stimulus and, hence, was regarded as functional parameter. AF was assessed by an objectified manual muscle test using a handheld device. Prior to treatment, AFiso(max) was considerably lower than AFmax for hip flexors (62 N = similar to 28\% AFmax) and elbow flexors (71 N = similar to 44\% AFmax); i.e., maximal holding capacity was significantly reduced, indicating dysfunctional motor control. We tested PEMF at C7/T1, identified a frequency that improved neuromuscular function, and applied it for similar to 15 min. Immediately post-treatment, AFiso(max) increased to similar to 210 N (similar to 100\% AFmax) at hip and 184 N (similar to 100\% AFmax) at elbow. Subjective Long COVID symptoms resolved the following day. At 4 weeks post-treatment, maximal holding capacity was still on a similarly high level as for immediately post-treatment (similar to 100\% AFmax) and patient was symptom-free. At 6 months the patient's Long COVID symptoms have not returned. This case report suggests (1) AF could be a promising diagnostic for post-infectious illness, (2) AF can be used to test effective treatments for post-infectious illness, and (3) individualized PEMF may resolve post-infectious symptoms.}, language = {en} }