@article{GuerreroFickelBenhaiemetal.2020, author = {Guerrero, Tania P. and Fickel, J{\"o}rns and Benhaiem, Sarah and Weyrich, Alexandra}, title = {Epigenomics and gene regulation in mammalian social systems}, series = {Current zoology}, volume = {66}, journal = {Current zoology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-5507}, doi = {10.1093/cz/zoaa005}, pages = {307 -- 319}, year = {2020}, abstract = {Social epigenomics is a new field of research that studies how the social environment shapes the epigenome and how in turn the epigenome modulates behavior. We focus on describing known gene-environment interactions (GEIs) and epigenetic mechanisms in different mammalian social systems. To illustrate how epigenetic mechanisms integrate GEls, we highlight examples where epigenetic mechanisms are associated with social behaviors and with their maintenance through neuroendocrine, locomotor, and metabolic responses. We discuss future research trajectories and open questions for the emerging field of social epigenomics in nonmodel and naturally occurring social systems. Finally, we outline the technological advances that aid the study of epigenetic mechanisms in the establishment of GEIs and vice versa.}, language = {en} } @article{PerrellaBaeurlevanZanten2022, author = {Perrella, Giorgio and B{\"a}urle, Isabel and van Zanten, Martijn}, title = {Epigenetic regulation of thermomorphogenesis and heat stress tolerance}, series = {New phytologist : international journal of plant science}, volume = {234}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.17970}, pages = {1144 -- 1160}, year = {2022}, abstract = {Many environmental conditions fluctuate and organisms need to respond effectively. This is especially true for temperature cues that can change in minutes to seasons and often follow a diurnal rhythm. Plants cannot migrate and most cannot regulate their temperature. Therefore, a broad array of responses have evolved to deal with temperature cues from freezing to heat stress. A particular response to mildly elevated temperatures is called thermomorphogenesis, a suite of morphological adaptations that includes thermonasty, formation of thin leaves and elongation growth of petioles and hypocotyl. Thermomorphogenesis allows for optimal performance in suboptimal temperature conditions by enhancing the cooling capacity. When temperatures rise further, heat stress tolerance mechanisms can be induced that enable the plant to survive the stressful temperature, which typically comprises cellular protection mechanisms and memory thereof. Induction of thermomorphogenesis, heat stress tolerance and stress memory depend on gene expression regulation, governed by diverse epigenetic processes. In this Tansley review we update on the current knowledge of epigenetic regulation of heat stress tolerance and elevated temperature signalling and response, with a focus on thermomorphogenesis regulation and heat stress memory. In particular we highlight the emerging role of H3K4 methylation marks in diverse temperature signalling pathways.}, language = {en} }