@article{FriedrichKoetzingKrejca2019, author = {Friedrich, Tobias and K{\"o}tzing, Timo and Krejca, Martin Stefan}, title = {Unbiasedness of estimation-of-distribution algorithms}, series = {Theoretical computer science}, volume = {785}, journal = {Theoretical computer science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3975}, doi = {10.1016/j.tcs.2018.11.001}, pages = {46 -- 59}, year = {2019}, abstract = {In the context of black-box optimization, black-box complexity is used for understanding the inherent difficulty of a given optimization problem. Central to our understanding of nature-inspired search heuristics in this context is the notion of unbiasedness. Specialized black-box complexities have been developed in order to better understand the limitations of these heuristics - especially of (population-based) evolutionary algorithms (EAs). In contrast to this, we focus on a model for algorithms explicitly maintaining a probability distribution over the search space: so-called estimation-of-distribution algorithms (EDAs). We consider the recently introduced n-Bernoulli-lambda-EDA framework, which subsumes, for example, the commonly known EDAs PBIL, UMDA, lambda-MMAS(IB), and cGA. We show that an n-Bernoulli-lambda-EDA is unbiased if and only if its probability distribution satisfies a certain invariance property under isometric automorphisms of [0, 1](n). By restricting how an n-Bernoulli-lambda-EDA can perform an update, in a way common to many examples, we derive conciser characterizations, which are easy to verify. We demonstrate this by showing that our examples above are all unbiased. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{DoerrKrejca2021, author = {Doerr, Benjamin and Krejca, Martin Stefan}, title = {A simplified run time analysis of the univariate marginal distribution algorithm on LeadingOnes}, series = {Theoretical computer science}, volume = {851}, journal = {Theoretical computer science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3975}, doi = {10.1016/j.tcs.2020.11.028}, pages = {121 -- 128}, year = {2021}, abstract = {With elementary means, we prove a stronger run time guarantee for the univariate marginal distribution algorithm (UMDA) optimizing the LEADINGONES benchmark function in the desirable regime with low genetic drift. If the population size is at least quasilinear, then, with high probability, the UMDA samples the optimum in a number of iterations that is linear in the problem size divided by the logarithm of the UMDA's selection rate. This improves over the previous guarantee, obtained by Dang and Lehre (2015) via the deep level-based population method, both in terms of the run time and by demonstrating further run time gains from small selection rates. Under similar assumptions, we prove a lower bound that matches our upper bound up to constant factors.}, language = {en} }