@article{BuschKlausSchaeferetal.2019, author = {Busch, Verena and Klaus, Valentin Helmut and Schaefer, Deborah and Prati, Daniel and Boch, Steffen and M{\"u}ller, J{\"o}rg and Chiste, Melanie and Mody, Karsten and Bl{\"u}thgen, Nico and Fischer, Markus and H{\"o}lzel, Norbert and Kleinebecker, Till}, title = {Will I stay or will I go? Plant species-specific response and tolerance to high land-use intensity in temperate grassland ecosystems}, series = {Journal of vegetation science}, volume = {30}, journal = {Journal of vegetation science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12749}, pages = {674 -- 686}, year = {2019}, language = {en} } @article{KaiserWehrhanWerneretal.2012, author = {Kaiser, Thomas and Wehrhan, Marc and Werner, Armin and Sommer, Michael}, title = {Regionalizing ecological moisture levels and groundwater levels in grassland areas using thermal remote sensing}, series = {Grassland science}, volume = {58}, journal = {Grassland science}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1744-6961}, doi = {10.1111/j.1744-697X.2011.00240.x}, pages = {42 -- 52}, year = {2012}, abstract = {Site-specific soil moisture and groundwater levels are key input parameters for ecological modeling. Obtaining such information in a comprehensive manner is difficult for large regions. We studied a floodplain region in the Federal State of Brandenburg, Germany, to examine the degree to which the average depth of groundwater tables can be derived from surface temperatures obtained by the ASTER radiospectrometer (spatial resolution of 90 m per pixel). A floristic ecological indicator representing the site-specific moisture level was applied to develop a proxy between the thermal satellite data and groundwater table depth. The use of spring scenes (late April to early May) from 2 years proved to be well suited for minimizing the effects of weather and land use. Vegetation surveys along transects that were 2 m wide across the pixel diagonals allowed for the calculation of average ecological moisture values of pixel-sites by applying Ellenberg-numbers. These values were used to calibrate the satellite data locally. There was a close relationship between surface temperature and the average ecological moisture value (R2 = 0.73). Average ecological moisture values were highly indicative of the average groundwater levels during a 7-year measurement series (R2 = 0.93). Satellite-supported thermal data from spring were suitable for estimating the average groundwater levels of low-lying grasslands on a larger scale. Ecological moisture values from the transect surveys effectively allowed the incorporation of relief heterogeneity within the thermal grid and the establishment of the correlation between thermal data and average groundwater table depth. Regression functions were used to produce a map of groundwater levels at the study site.}, language = {en} } @article{BochPratiMuelleretal.2013, author = {Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie and Baumbach, Henryk and Buscot, Francois and Gockel, Sonja and Hemp, Andreas and Hessenm{\"o}ller, Dominik and Kalko, Elisabeth K. V. and Linsenmair, K. Eduard and Pfeiffer, Simone and Pommer, Ulf and Sch{\"o}ning, Ingo and Schulze, Ernst-Detlef and Seilwinder, Claudia and Weisser, Wolfgang W. and Wells, Konstans and Fischer, Markus}, title = {High plant species richness indicates management-related disturbances rather than the conservation status of forests}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2013.06.001}, pages = {496 -- 505}, year = {2013}, abstract = {There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m x 20 m forest plots in three regions of Germany (Schwabische Alb, Hainich-Dun, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13\% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwabische Alb and Hainich-Dun, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20\% lower in unmanaged than in selection forests in Hainich-Dun. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.}, language = {en} } @article{WasofLenoirGalletMoronetal.2013, author = {Wasof, Safaa and Lenoir, Jonathan and Gallet-Moron, Emilie and Jamoneau, Aurelien and Brunet, J{\"o}rg and Cousins, Sara A. O. and De Frenne, Pieter and Diekmann, Martin and Hermy, Martin and Kolb, Annette and Liira, Jaan and Verheyen, Kris and Wulf, Monika and Decocq, Guillaume}, title = {Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe}, series = {Global ecology and biogeography : a journal of macroecology}, volume = {22}, journal = {Global ecology and biogeography : a journal of macroecology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1466-822X}, doi = {10.1111/geb.12073}, pages = {1130 -- 1140}, year = {2013}, abstract = {Aim In response to environmental changes and to avoid extinction, species may either track suitable environmental conditions or adapt to the modified environment. However, whether and how species adapt to environmental changes remains unclear. By focusing on the realized niche (i.e. the actual space that a species inhabits and the resources it can access as a result of limiting biotic factors present in its habitat), we here examine shifts in the realized-niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) of 26 common and widespread forest understorey plants across their distributional ranges. Location Temperate forests along a ca. 1800-km-long latitudinal gradient from northern France to central Sweden and Estonia. Methods We derived species' realized-niche width from a -diversity metric, which increases if the focal species co-occurs with more species. Based on the concept that species' scores in a detrended correspondence analysis (DCA) represent the locations of their realized-niche positions, we developed a novel approach to run species-specific DCAs allowing the focal species to shift its realized-niche position along the studied latitudinal gradient while the realized-niche positions of other species were held constant. Results None of the 26 species maintained both their realized-niche width and position along the latitudinal gradient. Few species (9 of 26: 35\%) shifted their realized-niche width, but all shifted their realized-niche position. With increasing latitude, most species (22 of 26: 85\%) shifted their realized-niche position for soil nutrients and pH towards nutrient-poorer and more acidic soils. Main conclusions Forest understorey plants shifted their realized niche along the latitudinal gradient, suggesting local adaptation and/or plasticity. This macroecological pattern casts doubt on the idea that the realized niche is stable in space and time, which is a key assumption of species distribution models used to predict the future of biodiversity, hence raising concern about predicted extinction rates.}, language = {en} } @article{VerheyenBaetenDeFrenneetal.2012, author = {Verheyen, Kris and Baeten, Lander and De Frenne, Pieter and Bernhardt-R{\"o}mermann, Markus and Brunet, Jorg and Cornelis, Johnny and Decocq, Guillaume and Dierschke, Hartmut and Eriksson, Ove and Hedl, Radim and Heinken, Thilo and Hermy, Martin and Hommel, Patrick and Kirby, Keith J. and Naaf, Tobias and Peterken, George and Petrik, Petr and Pfadenhauer, Joerg and Van Calster, Hans and Walther, Gian-Reto and Wulf, Monika and Verstraeten, Gorik}, title = {Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests}, series = {The journal of ecology}, volume = {100}, journal = {The journal of ecology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/j.1365-2745.2011.01928.x}, pages = {352 -- 365}, year = {2012}, abstract = {1. Atmospheric nitrogen (N) deposition is expected to change forest understorey plant community composition and diversity, but results of experimental addition studies and observational studies are not yet conclusive. A shortcoming of observational studies, which are generally based on resurveys or sampling along large deposition gradients, is the occurrence of temporal or spatial confounding factors. 2. We were able to assess the contribution of N deposition versus other ecological drivers on forest understorey plant communities by combining a temporal and spatial approach. Data from 1205 (semi-)permanent vegetation plots taken from 23 rigorously selected understorey resurvey studies along a large deposition gradient across deciduous temperate forest in Europe were compiled and related to various local and regional driving factors, including the rate of atmospheric N deposition, the change in large herbivore densities and the change in canopy cover and composition. 3. Although no directional change in species richness occurred, there was considerable floristic turnover in the understorey plant community and a shift in species composition towards more shade-tolerant and nutrient-demanding species. However, atmospheric N deposition was not important in explaining the observed eutrophication signal. This signal seemed mainly related to a shift towards a denser canopy cover and a changed canopy species composition with a higher share of species with more easily decomposed litter. 4. Synthesis. Our multi-site approach clearly demonstrates that one should be cautious when drawing conclusions about the impact of atmospheric N deposition based on the interpretation of plant community shifts in single sites or regions due to other, concurrent, ecological changes. Even though the effects of chronically increased N deposition on the forest plant communities are apparently obscured by the effects of canopy changes, the accumulated N might still have a significant impact. However, more research is needed to assess whether this N time bomb will indeed explode when canopies will open up again.}, language = {en} }