@article{GuerreroFangMillerBertolamietal.2018, author = {Guerrero, Martin A. and Fang, Xuan and Miller Bertolami, Marcelo Miguel and Ramos-Larios, Gerardo and Todt, Helge Tobias and Alarie, Alexandre and Sabin, Laurence and Miranda, Luis F. and Morisset, Christophe and Kehrig, Carolina and Zavala, Saul A.}, title = {The inside-out planetary nebula around a born-again star}, series = {Nature Astronomy}, volume = {2}, journal = {Nature Astronomy}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-3366}, doi = {10.1038/s41550-018-0551-8}, pages = {784 -- 789}, year = {2018}, abstract = {Planetary nebulae are ionized clouds of gas formed by the hydrogen-rich envelopes of low- and intermediate-mass stars ejected at late evolutionary stages. The strong UV flux from their central stars causes a highly stratified ionization structure, with species of higher ionization potential closer to the star. Here, we report on the exceptional case of HuBi 1, a double-shell planetary nebula whose inner shell presents emission from low-ionization species close to the star and emission from high-ionization species farther away. Spectral analysis demonstrates that the inner shell of HuBi 1 is excited by shocks, whereas its outer shell is recombining. The anomalous excitation of these shells can be traced to its low-temperature [WC10] central star whose optical brightness has declined continuously by 10 magnitudes in a period of 46 years. Evolutionary models reveal that this star is the descendant of a low-mass star (≃1.1 M⊙) that has experienced a 'born-again' event1 whose ejecta shock-excite the inner shell. HuBi 1 represents the missing link in the formation of metal-rich central stars of planetary nebulae from low-mass progenitors, offering unique insight regarding the future evolution of the born-again Sakurai's object2. Coming from a solar-mass progenitor, HuBi 1 represents a potential end-state for our Sun.}, language = {en} }