@article{MazurekBudzyńskaBehlNeumannetal.2022, author = {Mazurek-Budzyńska, Magdalena and Behl, Marc and Neumann, Richard and Lendlein, Andreas}, title = {4D-actuators by 3D-printing combined with water-based curing}, series = {Materials today. Communications}, volume = {30}, journal = {Materials today. Communications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4928}, doi = {10.1016/j.mtcomm.2021.102966}, pages = {7}, year = {2022}, abstract = {The shape and the actuation capability of state of the art robotic devices typically relies on multimaterial systems from a combination of geometry determining materials and actuation components. Here, we present multifunctional 4D-actuators processable by 3D-printing, in which the actuator functionality is integrated into the shaped body. The materials are based on crosslinked poly(carbonate-urea-urethane) networks (PCUU), synthesized in an integrated process, applying reactive extrusion and subsequent water-based curing. Actuation capability could be added to the PCUU, prepared from aliphatic oligocarbonate diol, isophorone diisocyanate (IPDI) and water, in a thermomechanical programming process. When programmed with a strain of epsilon(prog) = 1400\% the PCUU networks exhibited actuation apparent by reversible elongation epsilon'(rev) of up to 22\%. In a gripper a reversible bending epsilon'(rev)((be)(nd)()) in the range of 37-60\% was achieved when the actuation temperature (T-high) was varied between 45 degrees C and 49 degrees C. The integration of actuation and shape formation could be impressively demonstrated in two PCUU-based reversible fastening systems, which were able to hold weights of up to 1.1 kg. In this way, the multifunctional materials are interesting candidate materials for robotic applications where a freedom in shape design and actuation is required as well as for sustainable fastening systems.}, language = {en} }