@article{KoumarelasPapenbrockNaumann2020, author = {Koumarelas, Ioannis and Papenbrock, Thorsten and Naumann, Felix}, title = {MDedup}, series = {Proceedings of the VLDB Endowment}, volume = {13}, journal = {Proceedings of the VLDB Endowment}, number = {5}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {2150-8097}, doi = {10.14778/3377369.3377379}, pages = {712 -- 725}, year = {2020}, abstract = {Duplicate detection is an integral part of data cleaning and serves to identify multiple representations of same real-world entities in (relational) datasets. Existing duplicate detection approaches are effective, but they are also hard to parameterize or require a lot of pre-labeled training data. Both parameterization and pre-labeling are at least domain-specific if not dataset-specific, which is a problem if a new dataset needs to be cleaned. For this reason, we propose a novel, rule-based and fully automatic duplicate detection approach that is based on matching dependencies (MDs). Our system uses automatically discovered MDs, various dataset features, and known gold standards to train a model that selects MDs as duplicate detection rules. Once trained, the model can select useful MDs for duplicate detection on any new dataset. To increase the generally low recall of MD-based data cleaning approaches, we propose an additional boosting step. Our experiments show that this approach reaches up to 94\% F-measure and 100\% precision on our evaluation datasets, which are good numbers considering that the system does not require domain or target data-specific configuration.}, language = {en} } @article{LosterKoumarelasNaumann2021, author = {Loster, Michael and Koumarelas, Ioannis and Naumann, Felix}, title = {Knowledge transfer for entity resolution with siamese neural networks}, series = {ACM journal of data and information quality}, volume = {13}, journal = {ACM journal of data and information quality}, number = {1}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {1936-1955}, doi = {10.1145/3410157}, pages = {25}, year = {2021}, abstract = {The integration of multiple data sources is a common problem in a large variety of applications. Traditionally, handcrafted similarity measures are used to discover, merge, and integrate multiple representations of the same entity-duplicates-into a large homogeneous collection of data. Often, these similarity measures do not cope well with the heterogeneity of the underlying dataset. In addition, domain experts are needed to manually design and configure such measures, which is both time-consuming and requires extensive domain expertise.
We propose a deep Siamese neural network, capable of learning a similarity measure that is tailored to the characteristics of a particular dataset. With the properties of deep learning methods, we are able to eliminate the manual feature engineering process and thus considerably reduce the effort required for model construction. In addition, we show that it is possible to transfer knowledge acquired during the deduplication of one dataset to another, and thus significantly reduce the amount of data required to train a similarity measure. We evaluated our method on multiple datasets and compare our approach to state-of-the-art deduplication methods. Our approach outperforms competitors by up to +26 percent F-measure, depending on task and dataset. In addition, we show that knowledge transfer is not only feasible, but in our experiments led to an improvement in F-measure of up to +4.7 percent.}, language = {en} } @article{KoumarelasKroschkMosleyetal.2018, author = {Koumarelas, Ioannis and Kroschk, Axel and Mosley, Clifford and Naumann, Felix}, title = {Experience: Enhancing address matching with geocoding and similarity measure selection}, series = {Journal of Data and Information Quality}, volume = {10}, journal = {Journal of Data and Information Quality}, number = {2}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {1936-1955}, doi = {10.1145/3232852}, pages = {1 -- 16}, year = {2018}, abstract = {Given a query record, record matching is the problem of finding database records that represent the same real-world object. In the easiest scenario, a database record is completely identical to the query. However, in most cases, problems do arise, for instance, as a result of data errors or data integrated from multiple sources or received from restrictive form fields. These problems are usually difficult, because they require a variety of actions, including field segmentation, decoding of values, and similarity comparisons, each requiring some domain knowledge. In this article, we study the problem of matching records that contain address information, including attributes such as Street-address and City. To facilitate this matching process, we propose a domain-specific procedure to, first, enrich each record with a more complete representation of the address information through geocoding and reverse-geocoding and, second, to select the best similarity measure per each address attribute that will finally help the classifier to achieve the best f-measure. We report on our experience in selecting geocoding services and discovering similarity measures for a concrete but common industry use-case.}, language = {en} } @article{SchirmerPapenbrockKoumarelasetal.2020, author = {Schirmer, Philipp and Papenbrock, Thorsten and Koumarelas, Ioannis and Naumann, Felix}, title = {Efficient discovery of matching dependencies}, series = {ACM transactions on database systems : TODS}, volume = {45}, journal = {ACM transactions on database systems : TODS}, number = {3}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0362-5915}, doi = {10.1145/3392778}, pages = {33}, year = {2020}, abstract = {Matching dependencies (MDs) are data profiling results that are often used for data integration, data cleaning, and entity matching. They are a generalization of functional dependencies (FDs) matching similar rather than same elements. As their discovery is very difficult, existing profiling algorithms find either only small subsets of all MDs or their scope is limited to only small datasets. We focus on the efficient discovery of all interesting MDs in real-world datasets. For this purpose, we propose HyMD, a novel MD discovery algorithm that finds all minimal, non-trivial MDs within given similarity boundaries. The algorithm extracts the exact similarity thresholds for the individual MDs from the data instead of using predefined similarity thresholds. For this reason, it is the first approach to solve the MD discovery problem in an exact and truly complete way. If needed, the algorithm can, however, enforce certain properties on the reported MDs, such as disjointness and minimum support, to focus the discovery on such results that are actually required by downstream use cases. HyMD is technically a hybrid approach that combines the two most popular dependency discovery strategies in related work: lattice traversal and inference from record pairs. Despite the additional effort of finding exact similarity thresholds for all MD candidates, the algorithm is still able to efficiently process large datasets, e.g., datasets larger than 3 GB.}, language = {en} } @article{KoumarelasJiangNaumann2020, author = {Koumarelas, Ioannis and Jiang, Lan and Naumann, Felix}, title = {Data preparation for duplicate detection}, series = {Journal of data and information quality : (JDIQ)}, volume = {12}, journal = {Journal of data and information quality : (JDIQ)}, number = {3}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {1936-1955}, doi = {10.1145/3377878}, pages = {24}, year = {2020}, abstract = {Data errors represent a major issue in most application workflows. Before any important task can take place, a certain data quality has to be guaranteed by eliminating a number of different errors that may appear in data. Typically, most of these errors are fixed with data preparation methods, such as whitespace removal. However, the particular error of duplicate records, where multiple records refer to the same entity, is usually eliminated independently with specialized techniques. Our work is the first to bring these two areas together by applying data preparation operations under a systematic approach prior to performing duplicate detection.
Our process workflow can be summarized as follows: It begins with the user providing as input a sample of the gold standard, the actual dataset, and optionally some constraints to domain-specific data preparations, such as address normalization. The preparation selection operates in two consecutive phases. First, to vastly reduce the search space of ineffective data preparations, decisions are made based on the improvement or worsening of pair similarities. Second, using the remaining data preparations an iterative leave-one-out classification process removes preparations one by one and determines the redundant preparations based on the achieved area under the precision-recall curve (AUC-PR). Using this workflow, we manage to improve the results of duplicate detection up to 19\% in AUC-PR.}, language = {en} }