@article{SchueKopyshevLutzetal.2020, author = {Schu{\´e}, Emmanuelle and Kopyshev, Alexey and Lutz, Jean-Fran{\c{c}}ois and B{\"o}rner, Hans G.}, title = {Molecular bottle brushes with positioned selenols}, series = {Journal of Polymer Science}, volume = {58}, journal = {Journal of Polymer Science}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2642-4169}, doi = {10.1002/pola.29496}, pages = {154 -- 162}, year = {2020}, abstract = {A synthesis route to controlled and dynamic single polymer chain folding is reported. Sequence-controlled macromolecules containing precisely located selenol moieties within a polymer chain are synthesized. Oxidation of selenol functionalities lead to diselenide bridges and induces controlled intramolecular crosslinking to generate single chain collapse. The cyclization process is successfully characterized by SEC as well as by H-1 NMR and 2D HSQC NMR spectroscopies. In order to gain insight on the molecular level to reveal the degree of structural control, the folded polymers are transformed into folded molecular brushes that are known to be visualizable as single molecule structures by AFM. The "grafting onto" approach is performed by using triazolinedione-diene reaction to graft the side chain polymers. A series of folded molecular brushes as well as the corresponding linear controls are synthesized. AFM visualization is proving the cyclization of the folded backbone by showing globular objects, where non-folded brushes show typical worm-like structures. (C) 2019 The Authors. Journal of Polymer Science published by Wiley Periodicals, Inc.}, language = {en} } @article{YanFangNoecheletal.2016, author = {Yan, Wan and Fang, Liang and N{\"o}chel, Ulrich and Kratz, Karl and Lendlein, Andreas}, title = {Influence of programming strain rates on the shape-memory performance of semicrystalline multiblock copolymers}, series = {Journal of polymer science : B, Polymer physics}, volume = {54}, journal = {Journal of polymer science : B, Polymer physics}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-6266}, doi = {10.1002/polb.24097}, pages = {1935 -- 1943}, year = {2016}, abstract = {Multiblock copolymers named PCL-PIBMD consisting of crystallizable poly(epsilon-caprolactone) segments and crystallizable poly[oligo(3S-iso-butylmorpholine-2,5-dione)] segments coupled by trimethyl hexamethylene diisocyanate provide a versatile molecular architecture for achieving shape-memory effects (SMEs) in polymers. The mechanical properties as well as the SME performance of PCL-PIBMD can be tailored by the variation of physical parameters during programming such as deformation strain or applied temperature protocols. In this study, we explored the influence of applying different strain rates during programming on the resulting nanostructure of PCL-PIBMD. Programming was conducted at 50 degrees C by elongation to epsilon(m)=50\% with strain rates of 1 or 10 or 50 mmmin(-1). The nanostructural changes were visualized by atomic force microscopy (AFM) measurements and investigated by in situ wide and small angle X-ray scattering experiments. With increasing the strain rate, a higher degree of orientation was observed in the amorphous domains. Simultaneously the strain-induced formation of new PIBMD crystals as well as the fragmentation of existing large PIBMD crystals occurred. The observed differences in shape fixity ratio and recovery stress of samples deformed with various strain rates can be attributed to their different nanostructures. The achieved findings can be relevant parameters for programming the shape-memory polymers with designed recovery forces. (c) 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1935-1943}, language = {en} }