@article{LiStomaLottaetal.2020, author = {Li, Chen and Stoma, Svetlana and Lotta, Luca A. and Warner, Sophie and Albrecht, Eva and Allione, Alessandra and Arp, Pascal P. and Broer, Linda and Buxton, Jessica L. and Boeing, Heiner and Langenberg, Claudia and Codd, Veryan}, title = {Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length}, series = {American Journal of Human Genetics}, volume = {106}, journal = {American Journal of Human Genetics}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, pages = {16}, year = {2020}, abstract = {Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1 , PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.}, language = {en} } @article{KumarGoodwinUhouseetal.2015, author = {Kumar, Kevin K. and Goodwin, Cody R. and Uhouse, Michael A. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and McLean, John A. and Bowman, Aaron B.}, title = {Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status}, series = {Metallomics}, volume = {7}, journal = {Metallomics}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1756-591X}, doi = {10.1039/C4MT00223G}, pages = {363 -- 370}, year = {2015}, abstract = {Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity.}, language = {en} } @article{HavingaKoolAchilleetal.2016, author = {Havinga, Reinout and Kool, Anneleen and Achille, Frederic and Bavcon, Joze and Berg, Christian and Bonomi, Costantino and Burkart, Michael and De Meyere, Dirk and Havstrom, Mats and Kessler, Paul and Knickmann, Barbara and Koester, Nils and Martinez, Remy and Ostgaard, Havard and Ravnjak, Blanka and Scheen, Anne-Cathrine and Smith, Pamela and Smith, Paul and Socher, Stephanie A. and Vange, Vibekke}, title = {The Index Seminum: Seeds of change for seed exchange}, series = {Taxon}, volume = {65}, journal = {Taxon}, publisher = {International Association for Plant Taxonomy}, address = {Bratislava}, issn = {0040-0262}, doi = {10.12705/652.9}, pages = {333 -- 336}, year = {2016}, abstract = {Botanic gardens have been exchanging seeds through seed catalogues for centuries. In many gardens, these catalogues remain an important source of plant material. Living collections have become more relevant for genetic analysis and derived research, since genomics of non-model organisms heavily rely on living material. The range of species that is made available annually on all seed lists combined, provides an unsurpassed source of instantly accessible plant material for research collections. Still, the Index Seminum has received criticism in the past few decades. The current exchange model dictates that associated data is manually entered into each database. The amount of time involved and the human errors occurring in this process are difficult to justify when the data was initially produced as a report from another database. The authors propose that an online marketplace for seed exchange should be established, with enhanced search possibilities and downloadable accession data in a standardised format. Such online service should preferably be supervised and coordinated by Botanic Gardens Conservation International (BGCI). This manuscript is the outcome of a workshop on July 9th, 2015, at the European botanic gardens congress "Eurogard VII" in Paris, where the first two authors invited members of the botanic garden community to discuss how the anachronistic Index Seminum can be transformed into an improved and modern tool for seed exchange.}, language = {en} } @article{BenderBertheauKoerppenetal.2022, author = {Bender, Benedict and Bertheau, Clementine and K{\"o}rppen, Tim and Lauppe, Hannah and Gronau, Norbert}, title = {A proposal for future data organization in enterprise systems}, series = {Information systems and e-business management}, volume = {20}, journal = {Information systems and e-business management}, publisher = {Springer}, address = {Heidelberg}, issn = {1617-9846}, doi = {10.1007/s10257-022-00555-6}, pages = {441 -- 494}, year = {2022}, abstract = {The digital transformation sets new requirements to all classes of enterprise systems in companies. ERP systems in particular, which represent the dominant class of enterprise systems, are struggling to meet the new requirements at all levels of the architecture. Therefore, there is an urgent need to reconsider the overall architecture of the systems and address the root of the related issues. Given that many restrictions ERP pose on their adaptability are related to the standardization of data, the database layer of ERP systems is addressed. Since database serve as the foundation for data storage and retrieval, they limit the flexibility of enterprise systems and the chance to adapt to new requirements accordingly. So far, relational databases are widely used. Using a systematic literature approach, recent requirements for ERP systems were identified. Prominent database approaches were assessed against the 23 requirements identified. The results reveal the strengths and weaknesses of recent database approaches. To this end, the results highlight the demand to combine multiple database approaches to fulfill recent business requirements. From a conceptual point of view, this paper supports the idea of federated databases which are interoperable to fulfill future requirements and support business operation. This research forms the basis for renewal of the current generation of ERP systems and proposes to ERP vendors to use different database concepts in the future.}, language = {en} }