@article{MenzelNiehoffBuergeretal.2002, author = {Menzel, Lucas and Niehoff, Daniel and B{\"u}rger, Gerd and Bronstert, Axel}, title = {Climate change impacts on river flooding : a modelling study of three meso-scale catchments}, year = {2002}, language = {en} } @article{DidovetsKrysanovaBuergeretal.2019, author = {Didovets, Iulii and Krysanova, Valentina and B{\"u}rger, Gerd and Snizhko, Sergiy and Balabukh, Vira and Bronstert, Axel}, title = {Climate change impact on regional floods in the Carpathian region}, series = {Journal of hydrology : Regional studies}, volume = {22}, journal = {Journal of hydrology : Regional studies}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-5818}, doi = {10.1016/j.ejrh.2019.01.002}, pages = {14}, year = {2019}, abstract = {Study region: Tisza and Prut catchments, originating on the slopes of the Carpathian mountains. Study focus: The study reported here investigates (i) climate change impacts on flood risk in the region, and (ii) uncertainty related to hydrological modelling, downscaling techniques and climate projections. The climate projections used in the study were derived from five GCMs, downscaled either dynamically with RCMs or with the statistical downscaling model XDS. The resulting climate change scenarios were applied to drive the eco-hydrological model SWIM, which was calibrated and validated for the catchments in advance using observed climate and hydrological data. The changes in the 30-year flood hazards and 98 and 95 percentiles of discharge were evaluated for the far future period (2071-2100) in comparison with the reference period (1981-2010). New hydrological insights for the region: The majority of model outputs under RCP 4.5 show a small to strong increase of the 30-year flood level in the Tisza ranging from 4.5\% to 62\%, and moderate increase in the Prut ranging from 11\% to 22\%. The impact results under RCP 8.5 are more uncertain with changes in both directions due to high uncertainties in GCM-RCM climate projections, downscaling methods and the low density of available climate stations.}, language = {en} } @article{MeisslFormayerKlebinderetal.2017, author = {Meißl, Gertraud and Formayer, Herbert and Klebinder, Klaus and Kerl, Florian and Sch{\"o}berl, Friedrich and Geitner, Clemens and Markart, Gerhard and Leidinger, David and Bronstert, Axel}, title = {Climate change effects on hydrological system conditions influencing generation of storm runoff in small Alpine catchments}, series = {Hydrological processes : an international journal}, volume = {31}, journal = {Hydrological processes : an international journal}, number = {6}, publisher = {Wiley}, address = {New York}, issn = {0885-6087}, doi = {10.1002/hyp.11104}, pages = {1314 -- 1330}, year = {2017}, abstract = {Floods and debris flows in small Alpine torrent catchments (<10km(2)) arise from a combination of critical antecedent system state conditions and mostly convective precipitation events with high precipitation intensities. Thus, climate change may influence the magnitude-frequency relationship of extreme events twofold: by a modification of the occurrence probabilities of critical hydrological system conditions and by a change of event precipitation characteristics. Three small Alpine catchments in different altitudes in Western Austria (Ruggbach, Brixenbach and Langentalbach catchment) were investigated by both field experiments and process-based simulation. Rainfall-runoff model (HQsim) runs driven by localized climate scenarios (CNRM-RM4.5/ARPEGE, MPI-REMO/ECHAM5 and ICTP-RegCM3/ECHAM5) were used in order to estimate future frequencies of stormflow triggering system state conditions. According to the differing altitudes of the study catchments, two effects of climate change on the hydrological systems can be observed. On one hand, the seasonal system state conditions of medium altitude catchments are most strongly affected by air temperature-controlled processes such as the development of the winter snow cover as well as evapotranspiration. On the other hand, the unglaciated high-altitude catchment is less sensitive to climate change-induced shifts regarding days with critical antecedent soil moisture and desiccated litter layer due to its elevation-related small proportion of sensitive areas. For the period 2071-2100, the number of days with critical antecedent soil moisture content will be significantly reduced to about 60\% or even less in summer in all catchments. In contrast, the number of days with dried-out litter layers causing hydrophobic effects will increase by up to 8\%-11\% of the days in the two lower altitude catchments. The intensity analyses of heavy precipitation events indicate a clear increase in rain intensities of up to 10\%.}, language = {en} } @article{BronstertLahmer2000, author = {Bronstert, Axel and Lahmer, Werner}, title = {Bewirtschaftungsm{\"o}glichkeiten im Einzugsgebiet der Havel}, year = {2000}, language = {de} } @article{MiegelGraeffFrancketal.2017, author = {Miegel, Konrad and Gr{\"a}ff, Thomas and Franck, Christian and Salzmann, Thomas and Bronstert, Axel and Walther, Marc and Oswald, Sascha}, title = {Auswirkungen des Sturmhochwassers der Ostsee am 4./5. Januar 2017 auf das renaturierte Nieder- moor „H{\"u}telmoor und Heiligensee" an der deut- schen Ostseek{\"u}ste}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {61}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {4}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2017,4_2}, pages = {232 -- 243}, year = {2017}, abstract = {Entlang der K{\"u}stenniederung des Naturschutzgebietes „H{\"u}telmoor und Heiligensee", ca. 6 km nord{\"o}stlich von Rostock-Warnem{\"u}nde gelegen, wird seit dem Jahr 2000 die K{\"u}stend{\"u}ne nicht mehr instand gehalten. Im Rahmen der Renaturierung des Gebietes werden so grunds{\"a}tzlich wieder {\"U}berflutungen bei Ostseehochwassern zugelassen, was bisher jedoch noch nicht eingetreten ist. Am 4./5. Januar 2017 ereignete sich ein Sturmhochwasser der Ostsee, mit einem Scheitelwasserstand in Warnem{\"u}nde, der sich zwischen dem 10- und 20-j{\"a}hrlichen Hochwasserstand einordnet. Dennoch kam es bei diesem Ereignis nicht zum D{\"u}nendurchbruch und zur seeseitigen {\"U}berflutung, wohl aber zum binnenseitigen Einstrom von Salz- bzw. Brackwasser. Dieser erfolgte {\"u}ber den Graben, durch den das Gebiet normalerweise {\"u}ber die Warnow in die Ostsee entw{\"a}ssert. Durch das Einstr{\"o}men {\"u}ber die Sohlschwelle, sonst Auslass des Gebietes, stiegen die Wasserst{\"a}nde und Salzkonzentrationen in der s{\"u}dwestlichen H{\"a}lfte der Niederung an. Mit zunehmender Entfernung zur Sohlschwelle waren diese Auswirkungen jedoch geringer sp{\"u}rbar. Dies gilt wegen der Retentionswirkung der Niederung mehr f{\"u}r den Wasserstand als f{\"u}r die Salzkonzentration. W{\"a}hrend der Wasserstand durch den Einstau der Niederung und {\"U}berschwemmungen fl{\"a}chenhaft anstieg, breitete sich die Salzfront pr{\"a}ferentiell in den ehemaligen Entw{\"a}sserungsgr{\"a}ben, die trotz des Einstaus nach wie vor hydraulisch aktiv sind, eher linienhaft aus. Diese Interpretation beruht auf Messergebnissen von Wasserstand, elektrischer Leitf{\"a}higkeit und Wassertemperatur.}, language = {de} } @article{BreuerBormannBronstertetal.2009, author = {Breuer, Lutz and Bormann, Helge and Bronstert, Axel and Croke, Barry F. W. and Frede, Hans-Georg and Gr{\"a}ff, Thomas and Hubrechts, Lode and Kite, Geoffrey and Lanini, Jordan and Leavesley, George and Lettenmaier, Dennis P. and Lindstroem, Goeran and Seibert, Jan and Sivapalan, Mayuran and Viney, Neil R. and Willems, Patrick}, title = {Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III : scenario analysis}, issn = {0309-1708}, doi = {10.1016/j.advwatres.2008.06.009}, year = {2009}, abstract = {An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90\% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions.}, language = {en} } @article{KrauseBronstert2004, author = {Krause, Stefan and Bronstert, Axel}, title = {Approximation of Groundwater - Surface Water - Interactions in a Mesoscale Lowland River Catchment}, year = {2004}, language = {en} } @article{BronstertMenzel2002, author = {Bronstert, Axel and Menzel, Lucas}, title = {Advances in Flood Research}, year = {2002}, language = {en} } @article{BronstertKundzewiczMenzel2000, author = {Bronstert, Axel and Kundzewicz, Zbigniew W. and Menzel, Lucas}, title = {Achievements and future needs towards improved flood protection in the Oder river basin : results of the EU- expert meeting on the Oder flood in Summer '97}, isbn = {0-7923-6451-1, 0-7923-6452-X}, year = {2000}, language = {en} } @article{BronstertGuentner2000, author = {Bronstert, Axel and G{\"u}ntner, Andreas}, title = {A large-scale hydrological model for the semi-arid environment of north-eastern Brazil}, year = {2000}, language = {en} }