@inproceedings{ItzerottKaden2006, author = {Itzerott, Sibylle and Kaden, Klaus}, title = {Zur G{\"u}te der automatisierten Erkennung von Ackerkulturen in Abh{\"a}ngigkeit vom Bodenmuster : Projektergebnisse und weiterf{\"u}hrende Ans{\"a}tze}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7031}, year = {2006}, abstract = {Problemstellung • Geo{\"o}kologische Prozessforschung versucht f{\"u}r große Landschaftsausschnitte, die in der Natur ablaufenden und vom Menschen beeinflussten Prozesse mit Hilfe von Modellen nachzuvollziehen • exakte Erfassung der Ausstattung des Untersuchungsraumes ist wesentliche Voraussetzung f{\"u}r eine wirklichkeitsnahe Abbildung • Modelle derzeit weder in der Lage, alle ablaufenden Prozesse in die Betrachtung einzubeziehen, noch pr{\"a}zise Eingangsdaten bei der Beschreibung des Ausgangszustandes zu verarbeiten • h{\"a}ufig liegen Modelleingangsdaten nicht in der notwendigen Pr{\"a}zision vor • In Modellen wird Ausstattung eines Untersuchungsgebietes {\"u}ber den Boden, den Grundwassereinfluss und die Fl{\"a}chennutzung beschrieben • Fl{\"a}chennutzung besitzt weitgehend statische Elemente (Nutzungstypen Wald, Gew{\"a}sser, Siedlung) und hochdynamische Elemente (j{\"a}hrlicher Wechsel der Fruchtart auf jedem Acker) • Bedarf nach detaillierter (lage- und zeitkonkreter) Eingabe der Verteilung der Ackerfr{\"u}chte im Modellzeitraum, da Landwirtschaft als eine der bedeutenden Quellen f{\"u}r diffusen N{\"a}hrstoffeintrag ins {\"O}kosystem angesehen wird Stand der Forschung • bei Erfassung von Kulturen der Landwirtschaft aus Fernerkundungsdaten hat sich multitemporale Klassifizierung als sinnvoll erwiesen, weil sich anhand einer Einzelaufnahme die verschiedenen Kulturen nicht sicher trennen lassen • Klassifizierung erfolgt mit {\"u}berwachten Methoden unter Verwendung von Trainingsfl{\"a}chen im Datensatz, von denen die dort angebaute Frucht bekannt ist • in die Klassifizierung werden zus{\"a}tzliche Informationen einbezogen (Fuzzy), die Auskunft {\"u}ber die Wahrscheinlichkeit des Auftretens der Frucht geben (Anbaueignung in Abh{\"a}ngigkeit von Hangneigung, Niederschlag, H{\"o}henlage, Boden) Die Ergebnisse dieser Klassifikationen sind meist nicht auf andere Landschaftsausschnitte und Anbaujahre {\"u}bertragbar, weil die Auspr{\"a}gung der Spektralsignatur einer Kultur durch ver{\"a}nderte Boden- und Witterungsbedingungen variiert. L{\"o}sungsansatz • auf Basis von Satellitendaten und Anbauinformationen aus 15 aufeinander folgenden Jahren (35 Aufnahmetermine) sollten von Witterung und Boden unabh{\"a}ngige Jahreskurven der spektralen Charakteristik wichtiger Ackerkulturen gewonnen werden, die den Wachstumsverlauf der Pflanzen beschreiben • diese Kurven sollen anstelle von Trainingsgebieten zur multitemporalen Klassifizierung von Daten eines Anbaujahres herangezogen werden Schlussfolgerungen und Ausblick • Prinzipiell erscheint Vorgehen erfolgreich, jedoch in Abh{\"a}ngigkeit von der Brauchbarkeit der herangezogenen Szenen schwankt G{\"u}te des Ergebnisses noch • Verfahren stellt wesentlichen Fortschritt zu bisherigem Vorgehen auf Trainingsfl{\"a}chenbasis dar • ist zumindest im Untersuchungsgebiet immer wieder ohne weitere Kenntnis von Anbauinformationen anwendbar, lediglich exakte ph{\"a}nologische Datierung der dann verwendeten Aufnahmen erforderlich • f{\"u}r andere Gebiete (Variation in Niederschlag und Boden) ist Anpassung der ph{\"a}nologischen Datierung der Kurven erforderlich (Form ist weiter verwendbar) • optimale Bildkombination zur Trennung aller Kulturen ist: Anfang/Mitte April - Mitte Mai - Anfang Juli - Mitte August - Mitte September • Kombination sollte bei verbesserter Verf{\"u}gbarkeit von Daten beschaffbar sein • problematisch scheinen Trockensituationen im Mai und Juni zu sein, so dass zu schnell reifende Wintergetreide nicht richtig erkannt werden, Bedarf Bodeninformationen einzubeziehen • Trennung von Hackfr{\"u}chten weiterhin problematisch (wie schon in bisherigen Verfahren), f{\"u}hrt zu {\"u}berm{\"a}ßigen Anteilen im Ergebnis, in Abh{\"a}ngigkeit vom Anbauanteil besser vernachl{\"a}ssigen • Einbeziehung von Fuzzyinformationen erscheint sinnvoll • Zusammenhang von Bodeng{\"u}te und Frucht (Anbaueignung eines Bodens f{\"u}r eine Frucht) • Wasserverf{\"u}gbarkeit am Standort (in Abh{\"a}ngigkeit von Speicherverm{\"o}gen des Bodens, Grundwasseranschluss und Niederschlag) • Summe der Niederschl{\"a}ge bis zum Aufnahmezeitpunkt (Trockenheitsindex)
Dokument 1: Foliensatz | Dokument 2: Abstract
Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006}, language = {de} } @article{Heller2006, author = {Heller, Wilfried}, title = {Zur Bedeutung von Ethnizit{\"a}t in Transformationsl{\"a}ndern unter dem Einfluss von Globalisierung}, editor = {Sallanz, Josef}, year = {2006}, language = {de} } @article{GermerElsenbeerdeMoraes2006, author = {Germer, Sonja and Elsenbeer, Helmut and de Moraes, Jorge M.}, title = {Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rond{\^o}nia, Brazil)}, issn = {1027-5606}, doi = {10.5194/hess-10-383-2006}, year = {2006}, language = {en} } @article{ZimmermannElsenbeerdeMoraes2006, author = {Zimmermann, Beate and Elsenbeer, Helmut and de Moraes, Jorge M.}, title = {The influence of land-use changes on soil hydraulic properties : implications for runoff generation}, issn = {0378-1127}, doi = {10.1016/j.foreco.2005.10.070}, year = {2006}, language = {en} } @article{Heller2006, author = {Heller, Wilfried}, title = {Studienreform im Lichte des Bologna-Prozesses (mit dem Beispiel Geographie der Universit{\"a}t Potsdam)}, year = {2006}, language = {de} } @article{SommerKaczorekKuzyakovetal.2006, author = {Sommer, Michael and Kaczorek, Danuta and Kuzyakov, Yakov and Breuer, J{\"o}rn}, title = {Silicon pools and fluxes in soils and landscapes : a review}, year = {2006}, abstract = {Silicon (Si) is the second-most abundant element in the earth's crust. In the pedosphere, however, huge spans of Si contents occur mainly caused by Si redistribution in soil profiles and landscapes. Here, we summarize the current knowledge on the different pools and fluxes of Si in soils and terrestrial biogeosystems. Weathering and subsequent release of soluble Si may lead to (1) secondarily bound Si in newly formed Al silicates, (2) amorphous silica precipitation on surfaces of other minerals, (3) plant uptake, formation of phytogenic Si, and subsequent retranslocation to soils, (4) translocation within soil profiles and formation of new horizons, or (5) translocation out of soils (desilication). The research carried out hitherto focused on the participation of Si in weathering processes, especially in clay neoformation, buffering mechanisms for acids in soils or chemical denudation of landscapes. There are, however, only few investigations on the characteristics and controls of the low-crystalline, almost pure silica compounds formed during pedogenesis. Further, there is strong demand to improve the knowledge of (micro)biological and rhizosphere processes contributing to Si mobilization, plant uptake, and formation of phytogenic Si in plants, and release due to microbial decomposition. The contribution of the biogenic Si sources to Si redistribution within soil profiles and desilication remains unknown concerning the pools, rates, processes, and driving forces. Comprehensive studies considering soil hydrological, chemical, and biological processes as well as their interactions at the scale of pedons and landscapes are necessary to make up and model the Si balance and to couple terrestrial processes with Si cycle of limnic, fluvial, or marine biogeosystems}, language = {en} } @article{SzaramowiczJessel2006, author = {Szaramowicz, Martin and Jessel, Beate}, title = {Regionale Fl{\"a}chenpools in der Praxis}, year = {2006}, language = {de} } @article{SchatzabelMeyer2006, author = {Schatzabel, Hartmut and Meyer, S.}, title = {Reality, system, model, prediction : the modeling approach}, year = {2006}, language = {en} } @article{BlumensteinVanRensburgKruegeretal.2006, author = {Blumenstein, Oswald and Van Rensburg, L. and Kr{\"u}ger, Wolfgang and Schachtzabel, Hartmut}, title = {Preface}, year = {2006}, language = {en} } @article{HennenbergFischerKouadioetal.2006, author = {Hennenberg, K. J. and Fischer, Franka and Kouadio, K and Goetze, D and Orthmann, B and Linsenmair, KE and Jeltsch, Florian and Porembski, Stefan}, title = {Phytornass and fire occurrence along forest-savanna transects in the Comoe National Park, Ivory Coast}, issn = {0266-4674}, doi = {10.1017/S026646705003007}, year = {2006}, abstract = {In tropical West Africa, distribution patterns of forest islands in savannas are influenced by fires which occur regularly in the grass stratum. Along continuous forest-savanna transects in the Comoe National Park, the change in the amount and composition of non-woody phytomass was investigated from savanna to forest interior. This was correlated with the cover of vegetation strata above, soil depth, and the occurrence of seasonal surface fires. Phytomass mainly consisted of leaf litter in the forests (about 400 g m(-2) at the end of the rainy season, and about 600 g m(-2) at the end of the dry season) and of grasses in the savanna (about 900 g m(-2)). Low grass biomass appeared to be primarily the result of suppression by competing woody species and not of shallow soil. The occurrence of early dry-season fires seemed to be determined mainly by the amount of grass biomass as fuel because fires occurred in almost all savanna plots while forest sites remained unaffected. However, late dry-season fires will encounter higher amounts of leaf litter raising fire probability in forests. Due to the importance of the amount of combustible phytomass, fire probability and intensity might increase with annual precipitation in both savanna and forest}, language = {en} }