@article{WiltingPatelPfestorfetal.2016, author = {Wilting, A. and Patel, R. and Pfestorf, Hans and Kern, C. and Sultan, K. and Ario, A. and Penaloza, F. and Kramer-Schadt, S. and Radchuk, Viktoriia and Foerster, D. W. and Fickel, J{\"o}rns}, title = {Evolutionary history and conservation significance of the Javan leopard Panthera pardus melas}, series = {Journal of zoology : proceedings of the Zoological Society of London}, volume = {299}, journal = {Journal of zoology : proceedings of the Zoological Society of London}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0952-8369}, doi = {10.1111/jzo.12348}, pages = {239 -- 250}, year = {2016}, abstract = {The leopard Panthera pardus is widely distributed across Africa and Asia; however, there is a gap in its natural distribution in Southeast Asia, where it occurs on the mainland and on Java but not on the interjacent island of Sumatra. Several scenarios have been proposed to explain this distribution gap. Here, we complemented an existing dataset of 68 leopard mtDNA sequences from Africa and Asia with mtDNA sequences (NADH5+ ctrl, 724bp) from 19 Javan leopards, and hindcasted leopard distribution to the Pleistocene to gain further insights into the evolutionary history of the Javan leopard. Our data confirmed that Javan leopards are evolutionarily distinct from other Asian leopards, and that they have been present on Java since the Middle Pleistocene. Species distribution projections suggest that Java was likely colonized via a Malaya-Java land bridge that by-passed Sumatra, as suitable conditions for leopards during Pleistocene glacial periods were restricted to northern and western Sumatra. As fossil evidence supports the presence of leopards on Sumatra at the beginning of the Late Pleistocene, our projections are consistent with a scenario involving the extinction of leopards on Sumatra as a consequence of the Toba super volcanic eruption (similar to 74kya). The impact of this eruption was minor on Java, suggesting that leopards managed to survive here. Currently, only a few hundred leopards still live in the wild and only about 50 are managed in captivity. Therefore, this unique and distinctive subspecies requires urgent, concerted conservation efforts, integrating insitu and ex situ conservation management activities in a One Plan Approach to species conservation management.}, language = {en} } @article{GermonpreSablinLaznickovaGaletovaetal.2015, author = {Germonpre, Mietje and Sablin, Mikhail V. and Laznickova-Galetova, Martina and Despres, Viviane and Stevens, Rhiannon E. and Stiller, Mathias and Hofreiter, Michael}, title = {Palaeolithic dogs and Pleistocene wolves revisited: a reply to Morey (2014)}, series = {Journal of archaeological science}, volume = {54}, journal = {Journal of archaeological science}, publisher = {Elsevier}, address = {London}, issn = {0305-4403}, doi = {10.1016/j.jas.2014.11.035}, pages = {210 -- 216}, year = {2015}, abstract = {This is a reply to the comments of Morey (2014) on our identification of Palaeolithic dogs from several European Palaeolithic sites. In his comments Morey (2014) presents some misrepresentations and misunderstandings that we remedy here. In contrast to what Morey (2014) propounds, our results suggest that the domestication of the wolf was a long process that started early in the Upper Palaeolithic and that since that time two sympatric canid morphotypes can be seen in Eurasian sites: Pleistocene wolves and Palaeolithic dogs. Contrary to Morey (2014), we are convinced that the study of this domestication process should be multidisciplinary. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }