@article{DuenkelbergMaywaldSchmittetal.2020, author = {D{\"u}nkelberg, Sophie and Maywald, Martina and Schmitt, Anne Kristina and Schwerdtle, Tanja and Meyer, S{\"o}ren and Rink, Lothar}, title = {The interaction of sodium and zinc in the priming of T cell subpopulations regarding Th17 and Treg cells}, series = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, volume = {64}, journal = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-4133}, doi = {10.1002/mnfr.201900245}, pages = {10}, year = {2020}, abstract = {Scope: Nutrition is a critical determinant of a functional immune system. The aim of this study is to investigate the molecular mechanisms by which immune cells are influenced by zinc and sodium. Methods and Results: Mixed lymphocyte cultures and Jurkat cells are generated and incubated with zinc, sodium, or a combination of both for further tests. Zinc induces the number of regulatory T cells (Treg) and decreases T helper 17 cells (Th17), and sodium has the opposite effect. The transforming growth factor beta receptor signaling pathway is also enhanced by zinc and reduced by sodium as indicated by contrary phosphoSmad 2/3 induction. Antagonistic effects can also be seen on zinc transporter and metallothionein-1 (MT-1) mRNA expression: zinc declines Zip10 mRNA expression while sodium induces it, whereas MT-1 mRNA expression is induced by zinc while it is reduced by sodium. Conclusion: This data indicate that zinc and sodium display opposite effects regarding Treg and Th17 induction in MLC, respectively, resulting in a contrary effect on the immune system. Additionally, it reveals a direct interaction of zinc and sodium in the priming of T cell subpopulations and shows that Zip10 and MT-1 play a significant role in those differentiation pathways.}, language = {en} } @article{SchwarzeSprengerRiemer2020, author = {Schwarze, Thomas and Sprenger, Tobias and Riemer, Janine}, title = {1,2,3-Triazol-1,4-diyl-Fluoroionophores for Zn2+, Mg2+ and Ca2+ based on Fluorescence Intensity Enhancements in Water}, series = {ChemistrySelect}, volume = {5}, journal = {ChemistrySelect}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202003695}, pages = {12727 -- 12735}, year = {2020}, abstract = {Herein, we represent cation-responsive fluorescent probes for the divalent cations Zn2+, Mg2+ and Ca2+, which show cation-induced fluorescence enhancements (FE) in water. The Zn2+-responsive probes Zn1, Zn2, Zn3 and Zn4 are based on o-aminoanisole-N,N-diacetic acid (AADA) derivatives and show in the presence of Zn2+ FE factors of 11.4, 13.9, 6.1 and 8.2, respectively. Most of all, Zn1 and Zn2 show higher Zn2+ induced FE than the regioisomeric triazole linked fluorescent probes Zn3 and Zn4, respectively. In this set, ZN2 is the most suitable probe to detect extracellular Zn2+ levels. For the Mg2+-responsive fluorescent probes Mg1, Mg2 and Mg3 based on o-aminophenol-N,N,O-triacetic acid (APTRA) derivatives, we also found that the regioisomeric linkage influences the fluorescence responds towards Mg2+ (Mg1+100 mM Mg2+ (FEF=13.2) and Mg3+100 mM Mg2+ (FEF=2.1)). Mg2 shows the highest Mg2+-induced FE by a factor of 25.7 and an appropriate K-d value of 3 mM to measure intracellular Mg2+ levels. Further, the Ca2+-responsive fluorescent probes Ca1 and Ca2 equipped with a 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) derivative show high Ca2+-induced FEs (Ca1 (FEF=22.1) and Ca2 (FEF=23.0)). Herein, only Ca1 (K-d=313 nM) is a suitable Ca2+ fluorescent indicator to determine intracellular Ca2+ levels.}, language = {en} }