@article{Richter2012, author = {Richter, Philipp}, title = {Cold gas accretion by high-velocity clouds and their connection to QSO Absorption-line systems}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {750}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/750/2/165}, pages = {11}, year = {2012}, abstract = {We combine H I 21 cm observations of the Milky Way, M31, and the local galaxy population with QSO absorption-line measurements to geometrically model the three-dimensional distribution of infalling neutral-gas clouds ("high-velocity clouds" (HVCs)) in the extended halos of low-redshift galaxies. We demonstrate that the observed distribution of HVCs around the Milky Way and M31 can be modeled by a radial exponential decline of the mean H I volume-filling factor in their halos. Our model suggests a characteristic radial extent of HVCs of R-halo similar to 50 kpc, a total H I mass in HVCs of similar to 10(8) M-circle dot, and a neutral-gas accretion rate of similar to 0.7 M-circle dot yr(-1) for M31/Milky-Way-type galaxies. Using a Holmberg-like luminosity scaling of the halo size of galaxies we estimate R-halo similar to 110 kpc for the most massive galaxies. The total absorption cross-section of HVCs at z approximate to 0 most likely is dominated by galaxies with total H I masses between 10(8.5) and 10(10) M-circle dot. Our model indicates that the H I disks of galaxies and their surrounding HVC population can account for 30\%-100\% of intervening QSO absorption-line systems with log N(H I) >= 17.5 at z approximate to 0. We estimate that the neutral-gas accretion rate density of galaxies at low redshift from infalling HVCs is dM(H) (I)/dt/dV approximate to 0.022 M-circle dot yr(-1) Mpc(-3), which is close to the measured star formation rate density in the local universe. HVCs thus may play an important role in the ongoing formation and evolution of galaxies.}, language = {en} } @article{TelezhinskyDwarkadasPohl2012, author = {Telezhinsky, Igor O. and Dwarkadas, Vikram V. and Pohl, Martin}, title = {Time-dependent escape of cosmic rays from supernova remnants, and their interaction with dense media}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {541}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201118639}, pages = {11}, year = {2012}, abstract = {Context. Supernova remnants (SNRs) are thought to be the main source of Galactic cosmic rays (CRs) up to the "knee" in CR spectrum. During the evolution of a SNR, the bulk of the CRs are confined inside the SNR shell. The highest-energy particles leave the system continuously, while the remaining adiabatically cooled particles are released when the SNR has expanded sufficiently and decelerated so that the magnetic field at the shock is no longer able to confine them. Particles escaping from the parent system may interact with nearby molecular clouds, producing.-rays in the process via pion decay. The soft gamma-ray spectra observed for a number of SNRs interacting with molecular clouds, however, challenge current theories of non-linear particle acceleration that predict harder spectra. Aims. We study how the spectrum of escaped particles depends on the time-dependent acceleration history in both Type Ia and core-collapse SNRs, as well as on different assumptions about the diffusion coefficient in the vicinity of the SNR. Methods. We solve the CR transport equation in a test-particle approach combined with numerical simulations of SNR evolution. Results. We extend our method for calculating the CR acceleration in SNRs to trace the escaped particles in a large volume around SNRs. We calculate the evolution of the spectra of CRs that have escaped from a SNR into a molecular cloud or dense shell for two diffusion models. We find a strong confinement of CRs in a close region around the SNR, and a strong dilution effect for CRs that were able to propagate out as far as a few SNR radii.}, language = {en} }