@article{FechnerRichter2009, author = {Fechner, Cora and Richter, Philipp}, title = {The nature of N v absorbers at high redshift}, issn = {0004-6361}, doi = {10.1051/0004-6361/200810421}, year = {2009}, abstract = {Aims: We present a study of Nv absorption systems at 1.5 less than or similar to z less than or similar to 2.5 in the spectra of 19 QSOs, based on data obtained with the VLT/UVES instrument. Our analysis includes both the absorbers arising from the intergalactic medium, as well as systems in the vicinity of the background quasar. Methods: We construct detailed photoionization models to study the physical conditions and abundances in the absorbers and to constrain the spectral hardness of the ionizing radiation. Results: The rate of incidence for intervening Nv components is dN/dz = 3.38 +/- 0.43, corresponding to dN/dX = 1.10 +/- 0.14. The column density distribution function is fitted by the slope beta = 1.89 +/- 0.22, consistent with measurements of CIV and OVI. The narrow line widths (b(Nv) similar to 6 kms(-1)) imply photoionization rather than collisions as the dominating ionization process. The column densities of CIV and NV are correlated but show different slopes for intervening and associated absorbers, which indicates different ionizing spectra. Associated systems are found to be more metal-rich, denser, and more compact than intervening absorbers. This conclusion is independent of the adopted ionizing radiation. For the intervening NV systems we find typical values of [C/H] similar to-0.6 and n(II) similar to 10-3.6 cm(-3) and sizes of a few kpc, while for associated Nv absorbers we obtain [C/H] similar to + 0.7, n(II) similar to 10(-2.8) cm(-3) and sizes of several 10 pc. The abundance of nitrogen relative to carbon [N/C] and alpha-elements like oxygen and silicon [N/alpha] is correlated with [N/H], indicating the enrichment by secondary nitrogen. The larger scatter in [N/alpha] in intervening systems suggests an inhomogeneous enrichment of the IGM. There is an anti-correlation between [N/alpha] and [alpha/C], which could be used to constrain the initial mass function of the carbon-and nitrogen-producing stellar population.}, language = {en} } @article{RichterCharltonFanganoetal.2009, author = {Richter, Philipp and Charlton, Jane C. and Fangano, Alessio P. M. and Ben Bekhti, Nadya and Masiero, Joseph R.}, title = {A population of weak metal-line absorbers surrounding the Milky Way}, issn = {0004-637X}, doi = {10.1088/0004-637x/695/2/1631}, year = {2009}, abstract = {We report on the detection of a population of weak metal-line absorbers in the halo or nearby intergalactic environment of the Milky Way. Using high-resolution ultraviolet absorption-line spectra of bright quasars (QSO) obtained with the Space Telescope Imaging Spectrograph (STIS), along six sight lines we have observed unsaturated, narrow absorption in O I and Si II, together with mildly saturated C II absorption at high radial velocities (vertical bar v(LSR)vertical bar = 100-320 km s(-1)). The measured O I column densities lie in the range N(O I) 2 x 10(14) cm(-2) implying that these structures represent Lyman limit Systems and sub-Lyman limit System with H I column densities between 10(16) and 3 x 10(18) cm(-2), thus below the detection limits of current 21 cm all-sky surveys of high-velocity clouds (HVCs). The absorbers apparently are not directly associated with any of the large high column density HVC complexes, but rather represent isolated, partly neutral gas clumps embedded in a more tenuous, ionized gaseous medium situated in the halo or nearby intergalactic environment of the Galaxy. Photoionization modeling of the observed low ion ratios suggests typical hydrogen volume densities of n(H) > 0.02 cm(-3) and characteristic thicknesses of a several parsec down to subparsec scales. For three absorbers, metallicities are constrained in the range of 0.1-1.0 solar, implying that these gaseous structures may have multiple origins inside and outside the Milky Way. Using supplementary optical absorption-line data, we find for two other absorbers Ca II/O I column-density ratios that correspond to solar Ca/O abundance ratios. This finding indicates that these clouds do not contain significant amounts of dust. This population of low column density gas clumps in the circumgalactic environment of the Milky Way is indicative of the various processes that contribute to the circulation of neutral gas in the extended halos of spiral galaxies. These processes include the accretion of gas from the intergalactic medium and satellite galaxies, galactic fountains, and outflows. We speculate that this absorber population represents the local analog of weak Mg II systems that are commonly observed in the circumgalactic environment of low- and high-redshift galaxies.}, language = {en} } @article{FoxWakkerSmokeretal.2010, author = {Fox, Andrew J. and Wakker, Bart P. and Smoker, Jonathan V. and Richter, Philipp and Savage, Blair D. and Sembach, Kenneth R.}, title = {Exploring the origin and fate of the Magellanic stream with ultraviolet and optical absorption}, issn = {0004-637X}, doi = {10.1088/0004-637x/718/2/1046}, year = {2010}, abstract = {We present an analysis of ionization and metal enrichment in the Magellanic Stream (MS), the nearest gaseous tidal stream, using Hubble Space Telescope/STIS and FUSE ultraviolet spectroscopy of two background active galactic nuclei. The targets are NGC 7469, lying directly behind the MS with log N(H I)(MS) = 18.63 +/- 0.03(stat) +/- 0.08(syst), and Mrk 335, lying 24 degrees.7 away with log N(H I)(MS) = 16.67 +/- 0.05. For NGC 7469, we include optical spectroscopy from VLT/UVES. In both sight lines, the MS is detected in low-ion (O I, C II, C III, Si II, Si III, Al II, Ca II) and high-ion (O VI, C IV, Si IV) absorption. Toward NGC 7469, we measure an MS oxygen abundance [O/H](MS) = [O I/ H I]= -1.00 +/- 0.05(stat) +/- 0.08(syst), supporting the view that the Stream originates in the Small Magellanic Cloud rather than the Large Magellanic Cloud. We use CLOUDY to model the low-ion phase of the Stream as a photoionized plasma using the observed Si III/Si II and C III/C II ratios. Toward Mrk 335, this yields an ionization parameter between log U= -3.45 and -3.15, a gas density log (n(H)/cm(-3)) between-2.51 and -2.21, and a hydrogen ionization fraction of 98.9\%- 99.5\%. Toward NGC 7469, we derive sub-solar abundance ratios for [Si/O], [Fe/O], and [Al/O], indicating the presence of dust in the MS. The high-ion column densities are too large to be explained by photoionization, but also cannot be explained by a single-temperature collisional ionization model (equilibrium or non-equilibrium). This suggests that the high-ion plasma is multi-phase, with an Si IV region, a hotter O VI region, and C IV potentially contributing to each. Summing over the low-ion and high-ion phases, we derive conservative lower limits on the ratio N(total H II)/N(H I) of greater than or similar to 19 toward NGC 7469 and greater than or similar to 330 toward Mrk 335, showing that along these two directions the vast majority of the Stream has been ionized. The presence of warm-hot plasma together with the small-scale structure observed at 21 cm provides evidence for an evaporative interaction with the hot Galactic corona. This scenario, predicted by hydrodynamical simulations, suggests that the fate of the MS will be to replenish the Galactic corona with new plasma, rather than to bring neutral fuel to the disk.}, language = {en} } @article{WorseckProchaskaMcQuinnetal.2011, author = {Worseck, Gabor and Prochaska, J. Xavier and McQuinn, Matthew and Dall'Aglio, Aldo and Fechner, Cora and Hennawi, Joseph F. and Reimers, Dieter and Richter, Philipp and Wisotzki, Lutz}, title = {The end of Helium Reionization at z similar or equal to 2.7 Inferred from cosmic variance in HST/COS He II Ly alpha Absorption spectra}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {733}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/733/2/L24}, pages = {6}, year = {2011}, abstract = {We report on the detection of strongly varying intergalactic He II absorption in HST/COS spectra of two z(em) similar or equal to 3 quasars. From our homogeneous analysis of the He II absorption in these and three archival sightlines, we find a marked increase in the mean He II effective optical depth from similar or equal to 1 at z similar or equal to 2.3 to greater than or similar to 5 at z similar or equal to 3.2, but with a large scatter of 2 less than or similar to tau(eff, He II) less than or similar to 5 at 2.7 < z < 3 on scales of similar to 10 proper Mpc. This scatter is primarily due to fluctuations in the He II fraction and the He II-ionizing background, rather than density variations that are probed by the coeval Hi forest. Semianalytic models of He II absorption require a strong decrease in the He II-ionizing background to explain the strong increase of the absorption at z greater than or similar to 2.7, probably indicating He II reionization was incomplete at z(reion) greater than or similar to 2.7. Likewise, recent three-dimensional numerical simulations of He II reionization qualitatively agree with the observed trend only if He II reionization completes at z(reion) similar or equal to 2.7 or even below, as suggested by a large tau(eff, He II) greater than or similar to 3 in two of our five sightlines at z < 2.8. By doubling the sample size at 2.7 less than or similar to z less than or similar to 3, our newly discovered He II sightlines for the first time probe the diversity of the second epoch of reionization when helium became fully ionized.}, language = {en} } @article{RichterKrauseFechneretal.2011, author = {Richter, Philipp and Krause, F. and Fechner, Cora and Charlton, Jane C. and Murphy, M. T.}, title = {The neutral gas extent of galaxies as derived from weak intervening Ca II absorbers}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {528}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {4}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201015566}, pages = {22}, year = {2011}, abstract = {We present a systematic study of weak intervening CaII absorbers at low redshift (z < 0.5), based on the analysis of archival high-resolution (R >= 45 000) optical spectra of 304 quasars and active galactic nuclei observed with VLT/UVES. Along a total redshift path of Delta z approximate to 100 we detected 23 intervening CaII absorbers in both the CaII H \& K lines, with rest frame equivalent widths W-r,W-3934 = 15-799 m angstrom and column densities log N(CaII) = 11.25-13.04 (obtained by fitting Voigt-profile components). We obtain a bias-corrected number density of weak intervening CaII absorbers of dN/dz = 0.117 +/- 0.044 at < z(abs)> = 0.35 for absorbers with log N(CaII) >= 11.65 (W-r,W-3934 >= 32 m angstrom). This is similar to 2.6 times the value obtained for damped Lyman alpha absorbers (DLAs) at low redshift. All CaII absorbers in our sample show associated absorption by other low ions such as MgII and FeII; 45 percent of them have associated NaI absorption. From ionization modelling we conclude that intervening CaII absorption with log N(CaII) >= 11.5 arises in DLAs, sub-DLAs and Lyman-limit systems (LLS) at HI column densities of log N(HI) >= 17.4. Using supplementary HI information for nine of the absorbers we find that the CaII/HI ratio decreases strongly with increasing HI column density, indicating a column-density-dependent dust depletion of Ca. The observed column density distribution function of CaII absorption components follows a relatively steep power law, f(N) proportional to N-beta, with a slope of -beta = -1.68, which again points towards an enhanced dust depletion in high column density systems. The relatively large cross section of these absorbers together with the frequent detection of CaII absorption in high-velocity clouds (HVCs) in the halo of the Milky Way suggests that a considerable fraction of the intervening CaII systems trace (partly) neutral gas structures in the halos and circumgalactic environment of galaxies (i.e., they are HVC analogs). Based on the recently measured detection rate of CaII absorption in the Milky Way HVCs we estimate that the mean (projected) CaII covering fraction of galaxies and their gaseous halos is < f(c,CaII)> = 0.33. Using this value and considering all galaxies with luminosities L >= 0.05 L-star we calculate that the characteristic radial extent of (partly) neutral gas clouds with log N(HI) >= 17.4 around low-redshift galaxies is R-HVC approximate to 55 kpc.}, language = {en} } @article{TepperGarciaRichterSchayeetal.2011, author = {Tepper-Garcia, Thorsten and Richter, Philipp and Schaye, Joop and Booth, C. M. and Vecchia, Claudio Dalla and Theuns, Tom and Wiersma, Robert P. C.}, title = {Absorption signatures of warm-hot gas at low redshift o vi}, series = {Monthly notices of the Royal Astronomical Society}, volume = {413}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2010.18123.x}, pages = {190 -- 212}, year = {2011}, abstract = {We investigate the origin and physical properties of O vi absorbers at low redshift (z = 0.25) using a subset of cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations (OWLS) project. Intervening O vi absorbers are believed to trace shock-heated gas in the warm-hot intergalactic medium (WHIM) and may thus play a key role in the search for the missing baryons in the present-day Universe. When compared to observations, the predicted distributions of the different O vi line parameters (column density, Doppler parameter, rest equivalent width W-r) from our simulations exhibit a lack of strong O vi absorbers, a discrepancy that has also been found by Oppenheimer \& Dave. This suggests that physical processes on subgrid scales (e.g. turbulence) may strongly influence the observed properties of O vi systems. We find that the intervening O vi absorption arises mainly in highly metal enriched (10-1 < Z/Z(circle dot) less than or similar to 1) gas at typical overdensities of 1 < /<<>> less than or similar to 102. One-third of the O vi absorbers in our simulation are found to trace gas at temperatures T < 105 K, while the rest arises in gas at higher temperatures, most of them around T = 105.3 +/- 0.5 K. These temperatures are much higher than inferred by Oppenheimer \& Dave, probably because that work did not take the suppression of metal-line cooling by the photoionizing background radiation into account. While the O vi resides in a similar region of (, T)-space as much of the shock-heated baryonic matter, the vast majority of this gas has a lower metal content and does not give rise to detectable O vi absorption. As a consequence of the patchy metal distribution, O vi absorbers in our simulations trace only a very small fraction of the cosmic baryons (< 2 per cent) and the cosmic metals. Instead, these systems presumably trace previously shock-heated, metal-rich material from galactic winds that is now mixing with the ambient gas and cooling. The common approach of comparing O vi and H i column densities to estimate the physical conditions in intervening absorbers from QSO observations may be misleading, as most of the H i (and most of the gas mass) is not physically connected with the high-metallicity patches that give rise to the O vi absorption.}, language = {en} } @article{WinkelBenBekhtiDarmstaedteretal.2011, author = {Winkel, B. and Ben Bekhti, Nadya and Darmstaedter, V. and Floeer, L. and Kerp, J. and Richter, Philipp}, title = {The high-velocity cloud complex Galactic center negative as seen by EBHIS and GASS I. Cloud catalog and global properties}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {533}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {18}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117357}, pages = {13}, year = {2011}, abstract = {Using Milky Way data of the new Effelsberg-Bonn HI Survey (EBHIS) and the Galactic All-Sky Survey (GASS), we present a revised picture of the high-velocity cloud (HVC) complex Galactic center negative (GCN). Owing to the higher angular resolution of these surveys compared to previous studies (e.g., the Leiden Dwingeloo Survey), we resolve complex GCN into lots of individual tiny clumps, that mostly have relatively broad line widths of more than 15 km s(-1). We do not detect a diffuse extended counterpart, which is unusual for an HVC complex. In total 243 clumps were identified and parameterized which allows us to statistically analyze the data. Cold-line components (i.e.,Delta upsilon(fwhm) < 7.5 km s(-1)) are found in about 5\% only of the identified cloudlets. Our analysis reveals that complex GCN is likely built up of several subpopulations that do not share a common origin. Furthermore, complex GCN might be a prime example for warm-gas accretion onto the Milky Way, where neutral HI clouds are not stable against interaction with the Milky Way gas halo and become ionized prior to accretion.}, language = {en} } @article{DraganovaRichterFechner2012, author = {Draganova, Nadya and Richter, Philipp and Fechner, Cora}, title = {High-resolution observations of two O VI absorbers at z approximate to 2 toward PKS 1448-232}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {538}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {1}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201116730}, pages = {8}, year = {2012}, abstract = {To explore the ionization conditions in highly-ionized absorbers at high redshift, we study in detail two intervening O vi absorbers at z approximate to 2 toward the quasar PKS 1448-232, based on high (R approximate to 75 000) and intermediate (R approximate to 45 000) resolution optical VLT/UVES spectra. We find that both absorption systems are composed of several narrow subcomponents with typical Civ/O VI Doppler-parameters of b < 10 km s(-1). This implies that the gas temperatures are T < 10(5) K and that the absorbers are photoionized by the UV background. The system at z = 2.1098 represents a simple, isolated O VI absorber that has only two absorption components and is relatively metal-rich (Z similar to 0.6 solar). Ioinization modeling implies that the system is photoionized with O VI, C IV, and H I coexisting in the same gas phase. The second system at z = 2.1660 represents a complicated, multi-component absorption system with eight O VI components spanning almost 300 km s(-1) in radial velocity. The photoionization modeling implies that the metallicity is non-uniform and relatively low (<= 0.1 solar) and that the O VI absorption must arise in a gas phase that differs from that traced by C IV, C III, and H I. Our detailed study of the two O VI systems towards PKS 1448-232 shows that multi-phase, multi-component high-ion absorbers similar to the one at z = 2.1660 can be described by applying a detailed ionization modeling of the various subcomponents to obtain reliable measurements of the physical conditions and the metal abundances in the gas.}, language = {en} } @article{Richter2012, author = {Richter, Philipp}, title = {Cold gas accretion by high-velocity clouds and their connection to QSO Absorption-line systems}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {750}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/750/2/165}, pages = {11}, year = {2012}, abstract = {We combine H I 21 cm observations of the Milky Way, M31, and the local galaxy population with QSO absorption-line measurements to geometrically model the three-dimensional distribution of infalling neutral-gas clouds ("high-velocity clouds" (HVCs)) in the extended halos of low-redshift galaxies. We demonstrate that the observed distribution of HVCs around the Milky Way and M31 can be modeled by a radial exponential decline of the mean H I volume-filling factor in their halos. Our model suggests a characteristic radial extent of HVCs of R-halo similar to 50 kpc, a total H I mass in HVCs of similar to 10(8) M-circle dot, and a neutral-gas accretion rate of similar to 0.7 M-circle dot yr(-1) for M31/Milky-Way-type galaxies. Using a Holmberg-like luminosity scaling of the halo size of galaxies we estimate R-halo similar to 110 kpc for the most massive galaxies. The total absorption cross-section of HVCs at z approximate to 0 most likely is dominated by galaxies with total H I masses between 10(8.5) and 10(10) M-circle dot. Our model indicates that the H I disks of galaxies and their surrounding HVC population can account for 30\%-100\% of intervening QSO absorption-line systems with log N(H I) >= 17.5 at z approximate to 0. We estimate that the neutral-gas accretion rate density of galaxies at low redshift from infalling HVCs is dM(H) (I)/dt/dV approximate to 0.022 M-circle dot yr(-1) Mpc(-3), which is close to the measured star formation rate density in the local universe. HVCs thus may play an important role in the ongoing formation and evolution of galaxies.}, language = {en} } @article{TepperGarciaRichterSchayeetal.2012, author = {Tepper-Garcia, Thorsten and Richter, Philipp and Schaye, Joop and Booth, C. M. and Dalla Vecchia, Claudio and Theuns, Tom}, title = {Absorption signatures of warm-hot gas at low redshift: broad H?i Lya absorbers}, series = {Monthly notices of the Royal Astronomical Society}, volume = {425}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2012.21545.x}, pages = {1640 -- 1663}, year = {2012}, abstract = {We investigate the physical state of H?i absorbing gas at low redshift (z = 0.25) using a subset of cosmological, hydrodynamic simulations from the OverWhelmingly Large Simulations project, focusing in particular on broad (bHI=40 km s-1) H?i Lya absorbers (BLAs), which are believed to originate in shock-heated gas in the warm-hot intergalactic medium (WHIM). Our fiducial model, which includes radiative cooling by heavy elements and feedback by supernovae and active galactic nuclei, predicts that by z = 0.25 nearly 60?per cent of the gas mass ends up at densities and temperatures characteristic of the WHIM and we find that half of this fraction is due to outflows. The standard H?i observables (distribution of H?i column densities NH?I, distribution of Doppler parameters bHI, bHINH?I correlation) and the BLA line number density predicted by our simulations are in remarkably good agreement with observations. BLAs arise in gas that is hotter, more highly ionized and more enriched than the gas giving rise to typical Lya forest absorbers. The majority of the BLAs arise in warm-hot [log?(T/?K) similar to 5] gas at low (log?? < 1.5) overdensities. On average, thermal broadening accounts for at least 60?per cent of the BLA linewidth, which in turn can be used as a rough indicator of the thermal state of the gas. Detectable BLAs account for only a small fraction of the true baryon content of the WHIM at low redshift. In order to detect the bulk of the mass in this gas phase, a sensitivity at least one order of magnitude better than achieved by current ultraviolet spectrographs is required. We argue that BLAs mostly trace gas that has been shock heated and enriched by outflows and that they therefore provide an important window on a poorly understood feedback process.}, language = {en} }