@article{KhodeirErnouldBrassinneetal.2019, author = {Khodeir, Miriam and Ernould, Bruno and Brassinne, Jeremy and Ghiassinejad, Sina and Jia, He and Antoun, Sayed and Friebe, Christian and Schubert, Ulrich S. and Kochovski, Zdravko and Lu, Yan and Van Ruymbeke, Evelyne and Gohy, Jean-Francois}, title = {Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals}, series = {Soft matter}, volume = {15}, journal = {Soft matter}, number = {31}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c9sm00905a}, pages = {6418 -- 6426}, year = {2019}, abstract = {The principle of encapsulation/release of a guest molecule from stimuli responsive hydrogels (SRHs) is mainly realised with pH, temperature or light stimuli. However, only a limited number of redox responsive hydrogels have been investigated so far. We report here the development of a SRH that can release its guest molecule upon a redox stimulus. To obtain this redox hydrogel, we have introduced into the hydrogel the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radical, which can be reversibly oxidized into an oxoammonium cation (TEMPO+). Water solubility is provided by the presence of the (oligoethyleneglycol)methacrylate (OEGMA) comonomer. Electrochemical and mechanical characterization showed that those gels exhibit interesting physicochemical properties, making them very promising candidates for practical use in a wide range of applications.}, language = {en} } @article{JiaFriebeSchubertetal.2019, author = {Jia, He and Friebe, Christian and Schubert, Ulrich S. and Zhang, Xiaozhe and Quan, Ting and Lu, Yan and Gohy, Jean-Francois}, title = {Core-Shell Nanoparticles with a Redox Polymer Core and a Silica Porous Shell as High-Performance Cathode Material for Lithium-Ion Batteries}, series = {Energy technology : generation, conversion, storage, distribution}, volume = {8}, journal = {Energy technology : generation, conversion, storage, distribution}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2194-4288}, doi = {10.1002/ente.201901040}, pages = {8}, year = {2019}, abstract = {A facile and novel method for the fabrication of core-shell nanoparticles (PTMA@SiO2) based on a poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) core and a porous SiO2 shell is reported. The core-shell nanoparticles are further self-assembled with negatively charged multi-walled carbon nanotubes (MWCNTs), which results in the formation of a free-standing cathode electrode. The porous SiO2 shell not only effectively improves the stability of the linear PTMA redox polymer with low molar mass in organic electrolytes but also leads to the uniform dispersion of PTMA active units in the MWCNTs conductive network. The PTMA@SiO2@MWCNT composite electrode exhibits a specific capacity as high as 73.8 mAh g at 1 C and only 0.11\% capacity loss per cycle at a rate of 2 C.}, language = {en} }