@article{CherstvyNagelBetaetal.2018, author = {Cherstvy, Andrey G. and Nagel, Oliver and Beta, Carsten and Metzler, Ralf}, title = {Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {35}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp04254c}, pages = {23034 -- 23054}, year = {2018}, abstract = {What is the underlying diffusion process governing the spreading dynamics and search strategies employed by amoeboid cells? Based on the statistical analysis of experimental single-cell tracking data of the two-dimensional motion of the Dictyostelium discoideum amoeboid cells, we quantify their diffusive behaviour based on a number of standard and complementary statistical indicators. We compute the ensemble- and time-averaged mean-squared displacements (MSDs) of the diffusing amoebae cells and observe a pronounced spread of short-time diffusion coefficients and anomalous MSD-scaling exponents for individual cells. The distribution functions of the cell displacements, the long-tailed distribution of instantaneous speeds, and the velocity autocorrelations are also computed. In particular, we observe a systematic superdiffusive short-time behaviour for the ensemble- and time-averaged MSDs of the amoeboid cells. Also, a clear anti-correlation of scaling exponents and generalised diffusivity values for different cells is detected. Most significantly, we demonstrate that the distribution function of the cell displacements has a strongly non-Gaussian shape andusing a rescaled spatio-temporal variablethe cell-displacement data collapse onto a universal master curve. The current analysis of single-cell motions can be implemented for quantifying diffusive behaviours in other living-matter systems, in particular, when effects of active transport, non-Gaussian displacements, and heterogeneity of the population are involved in the dynamics.}, language = {en} } @article{MetzlerJeonCherstvyetal.2014, author = {Metzler, Ralf and Jeon, Jae-Hyung and Cherstvy, Andrey G. and Barkai, Eli}, title = {Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {44}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp03465a}, pages = {24128 -- 24164}, year = {2014}, abstract = {Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion.}, language = {en} } @article{CherstvyMetzler2008, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes}, doi = {10.1039/C3CP53056F}, year = {2008}, abstract = {We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependent diffusion coefficient and the initial conditions of the diffusing particles are vital for their statistical and ergodic properties. In all three cases a weak ergodicity breaking between the time and ensemble averaged mean squared displacements is observed. We also demonstrate a population splitting of the time averaged traces into fast and slow diffusers for the case of exponential variation of the diffusivity as well as a particle trapping in the case of the logarithmic diffusivity. Our analysis is complemented by the quantitative study of the space coverage, the diffusive spreading of the probability density, as well as the survival probability.}, language = {en} } @misc{CherstvyMetzler2013, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94468}, pages = {20220 -- 20235}, year = {2013}, abstract = {We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependent diffusion coefficient and the initial conditions of the diffusing particles are vital for their statistical and ergodic properties. In all three cases a weak ergodicity breaking between the time and ensemble averaged mean squared displacements is observed. We also demonstrate a population splitting of the time averaged traces into fast and slow diffusers for the case of exponential variation of the diffusivity as well as a particle trapping in the case of the logarithmic diffusivity. Our analysis is complemented by the quantitative study of the space coverage, the diffusive spreading of the probability density, as well as the survival probability.}, language = {en} } @article{deCarvalhoMetzlerCherstvy2015, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Inverted critical adsorption of polyelectrolytes in confinement}, series = {Soft matter}, journal = {Soft matter}, number = {11}, publisher = {Royal Society of Chemistry}, address = {London}, issn = {1744-6848}, doi = {10.1039/C5SM00635J}, pages = {4430 -- 4443}, year = {2015}, abstract = {What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer-surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density sc—defining the adsorption-desorption transition—are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude and scaling of sc for the concave interfaces versus the Debye screening length 1/k and the extent of confinement a for these three interfaces for small ka values. For large ka the critical adsorption condition approaches the known planar limit. The transition between the two regimes takes place when the radius of surface curvature or half of the slit thickness a is of the order of 1/k. We also rationalize how sc(k) dependence gets modified for semi-flexible versus flexible chains under external confinement. We examine the implications of the chain length for critical adsorption—the effect often hard to tackle theoretically—putting an emphasis on polymers inside attractive spherical cavities. The applications of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids onto the inner surfaces of cylindrical and spherical viral capsids.}, language = {en} } @misc{deCarvalhoMetzlerCherstvy2015, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Inverted critical adsorption of polyelectrolytes in confinement}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89562}, pages = {4430 -- 4443}, year = {2015}, abstract = {What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer-surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density sc—defining the adsorption-desorption transition—are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude and scaling of sc for the concave interfaces versus the Debye screening length 1/k and the extent of confinement a for these three interfaces for small ka values. For large ka the critical adsorption condition approaches the known planar limit. The transition between the two regimes takes place when the radius of surface curvature or half of the slit thickness a is of the order of 1/k. We also rationalize how sc(k) dependence gets modified for semi-flexible versus flexible chains under external confinement. We examine the implications of the chain length for critical adsorption—the effect often hard to tackle theoretically—putting an emphasis on polymers inside attractive spherical cavities. The applications of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids onto the inner surfaces of cylindrical and spherical viral capsids.}, language = {en} } @article{BodrovaChechkinCherstvyetal.2015, author = {Bodrova, Anna and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Quantifying non-ergodic dynamics of force-free granular gases}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, number = {17}, issn = {1463-9084}, doi = {10.1039/C5CP02824H}, pages = {21791 -- 21798}, year = {2015}, abstract = {Brownianmotion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann- Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat—depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions—both a constant and a velocity-dependent (viscoelastic) restitution coefficient e. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of e on the impact velocity of particles.}, language = {en} } @misc{BodrovaChechkinCherstvyetal.2015, author = {Bodrova, Anna and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Quantifying non-ergodic dynamics of force-free granular gases}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85200}, year = {2015}, abstract = {Brownianmotion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat—depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions—both a constant and a velocity-dependent (viscoelastic) restitution coefficient e. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of e on the impact velocity of particles.}, language = {en} } @misc{GhoshCherstvyMetzler2014, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Non-universal tracer diffusion in crowded media of non-inert obstacles}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77128}, pages = {1847 -- 1858}, year = {2014}, abstract = {We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.}, language = {en} } @article{GhoshCherstvyMetzler2014, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Non-universal tracer diffusion in crowded media of non-inert obstacles}, series = {Physical Chemistry Chemical Physics}, volume = {3}, journal = {Physical Chemistry Chemical Physics}, number = {17}, editor = {Metzler, Ralf}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, pages = {1847 -- 1858}, year = {2014}, abstract = {We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.}, language = {en} }