@article{MuellerFoerstendorfSteudtneretal.2019, author = {M{\"u}ller, Katharina and Foerstendorf, Harald and Steudtner, Robin and Tsushima, Satoru and Kumke, Michael Uwe and Lef{\`e}vre, Gr{\´e}gory and Rothe, J{\"o}rg and Mason, Harris and Szab{\´o}, Zolt{\´a}n and Yang, Ping and Adam, Christian K. R. and Andr{\´e}, R{\´e}mi and Brennenstuhl, Katlen and Chiorescu, Ion and Cho, Herman M. and Creff, Ga{\"e}lle and Coppin, Fr{\´e}d{\´e}ric and Dardenne, Kathy and Den Auwer, Christophe and Drobot, Bj{\"o}rn and Eidner, Sascha and Hess, Nancy J. and Kaden, Peter and Kremleva, Alena and Kretzschmar, Jerome and Kr{\"u}ger, Sven and Platts, James A. and Panak, Petra and Polly, Robert and Powell, Brian A. and Rabung, Thomas and Redon, Roland and Reiller, Pascal E. and R{\"o}sch, Notker and Rossberg, Andr{\´e} and Scheinost, Andreas C. and Schimmelpfennig, Bernd and Schreckenbach, Georg and Skerencak-Frech, Andrej and Sladkov, Vladimir and Solari, Pier Lorenzo and Wang, Zheming and Washton, Nancy M. and Zhang, Xiaobin}, title = {Interdisciplinary Round-Robin Test on molecular spectroscopy of the U(VI) Acetate System}, series = {ACS omega / American Chemical Society}, volume = {4}, journal = {ACS omega / American Chemical Society}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.9b00164}, pages = {8167 -- 8177}, year = {2019}, abstract = {A comprehensive molecular analysis of a simple aqueous complexing system. U(VI) acetate. selected to be independently investigated by various spectroscopic (vibrational, luminescence, X-ray absorption, and nuclear magnetic resonance spectroscopy) and quantum chemical methods was achieved by an international round-robin test (RRT). Twenty laboratories from six different countries with a focus on actinide or geochemical research participated and contributed to this scientific endeavor. The outcomes of this RRT were considered on two levels of complexity: first, within each technical discipline, conformities as well as discrepancies of the results and their sources were evaluated. The raw data from the different experimental approaches were found to be generally consistent. In particular, for complex setups such as accelerator-based X-ray absorption spectroscopy, the agreement between the raw data was high. By contrast, luminescence spectroscopic data turned out to be strongly related to the chosen acquisition parameters. Second, the potentials and limitations of coupling various spectroscopic and theoretical approaches for the comprehensive study of actinide molecular complexes were assessed. Previous spectroscopic data from the literature were revised and the benchmark data on the U(VI) acetate system provided an unambiguous molecular interpretation based on the correlation of spectroscopic and theoretical results. The multimethodologic approach and the conclusions drawn address not only important aspects of actinide spectroscopy but particularly general aspects of modern molecular analytical chemistry.}, language = {en} } @article{AlrefaiMondalWrucketal.2019, author = {Alrefai, Anas and Mondal, Suvendu Sekhar and Wruck, Alexander and Kelling, Alexandra and Schilde, Uwe and Brandt, Philipp and Janiak, Christoph and Schoenfeld, Sophie and Weber, Birgit and Rybakowski, Lawrence and Herrman, Carmen and Brennenstuhl, Katlen and Eidner, Sascha and Kumke, Michael Uwe and Behrens, Karsten and G{\"u}nter, Christina and M{\"u}ller, Holger and Holdt, Hans-J{\"u}rgen}, title = {Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties}, series = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, volume = {94}, journal = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {1388-3127}, doi = {10.1007/s10847-019-00926-6}, pages = {155 -- 165}, year = {2019}, abstract = {By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer-Emmett-Teller (BET) surface area of 471m(2) g(-1)), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area=85m(2) g(-1)]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340nm, which was indicative for differences in the imidazolate framework.}, language = {en} }