@article{LendleinHeuchel2021, author = {Lendlein, Andreas and Heuchel, Matthias}, title = {Shape-memory polymers designed in view of thermomechanical energy storage and conversion systems}, series = {ACS central science}, volume = {7}, journal = {ACS central science}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {2374-7951}, doi = {10.1021/acscentsci.1c01032}, pages = {1599 -- 1601}, year = {2021}, language = {en} } @article{ZhangSaidWischkeetal.2017, author = {Zhang, Nan and Said, Andre and Wischke, Christian and Kral, Vivian and Brodwolf, Robert and Volz, Pierre and Boreham, Alexander and Gerecke, Christian and Li, Wenzhong and Neffe, Axel T. and Kleuser, Burkhard and Alexiev, Ulrike and Lendlein, Andreas and Sch{\"a}fer-Korting, Monika}, title = {Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles - Composition-dependent skin penetration enhancement of a dye probe and biocompatibility}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.10.019}, pages = {66 -- 75}, year = {2017}, abstract = {Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1\% and particle size ranged from 35 to 244 nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure.}, language = {en} } @phdthesis{Cao2020, author = {Cao, Qian}, title = {Graphitic carbon nitride and polymer hybrid materials}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2020}, abstract = {Advanced hybrid materials are recognized as one of the most significant enablers for new technologies, which holds true especially on the quest for sustainable energy sources and energy production schemes (e.g., semiconductor based photocatalytic materials). Usually, a single component is far from meeting all the demands needed for these advanced applications. Hybrid materials are composed of at least two components commonly an inorganic and an organic material on the molecular level, which feature novel properties exceeding the sum of the individual parts and might be the milestones of next-generation applications. This dissertation aims to provide novel combinations of the metal-free semiconductor graphitic carbon nitride (g-C3N4) with polymers to obtain materials with advanced properties and applications. Visible light constitutes the core of the present work as it is the only energy source utilized either in synthesis or in the application process. In the area of applications by combination of g-C3N4 and polymers, two different hybrids were thoroughly elucidated, i.e.. their design and construction as well as potential application in photocatalysis. Novel soft 3D liquid objects were formed via charge-interaction driven interfacial jamming between polyelectrolytes in aqueous environment and colloidal dispersions of g-C3N4 in edible sunflower oil. As such, stable liquid objects could be molded into specific shapes and utilized for photodegradation of organic dyes in water. Furthermore, the grafting of polymers onto g-C3N4 was investigated. Allyl-end functionalized polymers were grafted onto g-C3N4 by a photoinitiated process to yield g-C3N4 with versatile and improved properties, e.g. advanced dispersibility enabling processing via spin coating. As g-C3N4 produces radicals under visible light irradiation, which is of significant interest for polymer science, g-C3N4 containing polymer latex and macrogel beads (MGB) were synthesized by emulsion photopolymerization and inverse suspension photopolymerization, respectively. A well-controlled emulsion photopolymerization process via g-C3N4 initiation was designed, which features synthesis of well-defined and cross-linked polymer particles. Furthermore, the polymerization process was investigated thoroughly, indicating an ad-layer polymerization in early stages of the process. The utilization of functionalized g-C3N4 allowed the polymerization of various monomer types. Moreover, g-C3N4 was utilized as photoinitiator in hydrogel MGB formation. The formed MGB properties could be tailored via process design, e.g. stirring rate, cross-linker content and g-C3N4 content. Finally, MGBs were introduced as photocatalyst for waste water remediation, i.e. the degradation of Rhodamine B in aqueous solution was studied. The present thesis therefore builds a bridge between g-C3N4 and polymers and provides strategies for hybrid material formation. Furthermore, several potential applications are revealed with significant implications for photocatalysis, polymerization processes and polymer materials.}, language = {en} } @article{GhobadiHeuchelKratzetal.2012, author = {Ghobadi, Ehsan and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Influence of different heating regimes on the shape-recovery behavior of poly(L-lactide) in simulated thermomechanical tests}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10440}, pages = {259 -- 264}, year = {2012}, abstract = {Aim: Multifunctional polymer-based biomaterials, which combine degradability with a shape-memory capability and in this way enable the design of actively moving implants such as self-anchoring implants or controlled release systems, have been recently introduced. Of particular interest are approved degradable polymers such as poly(L-lactide) (PLLA), which can be easily functionalized with a shape-memory effect. In the case of semicrystalline PLLA, the glass transition can be utilized as shape-memory switching domain. Methods: In this work we applied a fully atomistic molecular dynamics simulation to study the shape-memory behavior of PLLA. A heating-deformation-cooling programming procedure was applied to atomistic PLLA packing models followed by a recovery module under stress-free conditions allowing the shape recovery. The recovery was simulated by heating the samples from T-low = 250 K to T-high = 500 K with different heating rates beta of 125, 40 and 4 K.ns(-1). Results: We could demonstrate that the obtained strain recovery rate (R-r) was strongly influenced by the applied simulation time and heating rate, whereby R-r values in the range from 46\% to 63\% were achieved. On its own the application of a heating rate of 4 K.ns(-1) enabled us to determine a characteristic switching temperature of T-sw = 473 K for the modeled samples. Conclusions: We anticipate that the atomistic modeling approach presented should be capable of enabling further study of T-sw with respect to the molecular structure of the investigated SMP and therefore could be applied in the context of design and development of new shape-memory (bio) materials.}, language = {en} } @misc{BleekTaubert2013, author = {Bleek, Katrin and Taubert, Andreas}, title = {New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2012.12.027}, pages = {6283 -- 6321}, year = {2013}, abstract = {The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations.}, language = {en} }