@phdthesis{Guill2022, author = {Guill, Christian}, title = {Structure, stability and functioning of food webs}, doi = {10.25932/publishup-56115}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561153}, school = {Universit{\"a}t Potsdam}, pages = {250}, year = {2022}, abstract = {In this thesis, a collection of studies is presented that advance research on complex food webs in several directions. Food webs, as the networks of predator-prey interactions in ecosystems, are responsible for distributing the resources every organism needs to stay alive. They are thus central to our understanding of the mechanisms that support biodiversity, which in the face of increasing severity of anthropogenic global change and accelerated species loss is of highest importance, not least for our own well-being. The studies in the first part of the thesis are concerned with general mechanisms that determine the structure and stability of food webs. It is shown how the allometric scaling of metabolic rates with the species' body masses supports their persistence in size-structured food webs (where predators are larger than their prey), and how this interacts with the adaptive adjustment of foraging efforts by consumer species to create stable food webs with a large number of coexisting species. The importance of the master trait body mass for structuring communities is further exemplified by demonstrating that the specific way the body masses of species engaging in empirically documented predator-prey interactions affect the predator's feeding rate dampens population oscillations, thereby helping both species to survive. In the first part of the thesis it is also shown that in order to understand certain phenomena of population dynamics, it may be necessary to not only take the interactions of a focal species with other species into account, but to also consider the internal structure of the population. This can refer for example to different abundances of age cohorts or developmental stages, or the way individuals of different age or stage interact with other species. Building on these general insights, the second part of the thesis is devoted to exploring the consequences of anthropogenic global change on the persistence of species. It is first shown that warming decreases diversity in size-structured food webs. This is due to starvation of large predators on higher trophic levels, which suffer from a mismatch between their respiration and ingestion rates when temperature increases. In host-parasitoid networks, which are not size-structured, warming does not have these negative effects, but eutrophication destabilises the systems by inducing detrimental population oscillations. In further studies, the effect of habitat change is addressed. On the level of individual patches, increasing isolation of habitat patches has a similar effect as warming, as it leads to decreasing diversity due to the extinction of predators on higher trophic levels. In this case it is caused by dispersal mortality of smaller and therefore less mobile species on lower trophic levels, meaning that an increasing fraction of their biomass production is lost to the inhospitable matrix surrounding the habitat patches as they become more isolated. It is further shown that increasing habitat isolation desynchronises population oscillations between the patches, which in itself helps species to persist by dampening fluctuations on the landscape level. However, this is counteracted by an increasing strength of local population oscillations fuelled by an indirect effect of dispersal mortality on the feeding interactions. Last, a study is presented that introduces a novel mechanism for supporting diversity in metacommunities. It builds on the self-organised formation of spatial biomass patterns in the landscape, which leads to the emergence of spatio-temporally varying selection pressures that keep local communities permanently out of equilibrium and force them to continuously adapt. Because this mechanism relies on the spatial extension of the metacommunity, it is also sensitive to habitat change. In the third part of the thesis, the consequences of biodiversity for the functioning of ecosystems are explored. The studies focus on standing stock biomass, biomass production, and trophic transfer efficiency as ecosystem functions. It is first shown that increasing the diversity of animal communities increases the total rate of intra-guild predation. However, the total biomass stock of the animal communities increases nevertheless, which also increases their exploitative pressure on the underlying plant communities. Despite this, the plant communities can maintain their standing stock biomass due to a shift of the body size spectra of both animal and plant communities towards larger species with a lower specific respiration rate. In another study it is further demonstrated that the generally positive relationship between diversity and the above mentioned ecosystem functions becomes steeper when not only the feeding interactions but also the numerous non-trophic interactions (like predator interference or competition for space) between the species of an ecosystem are taken into account. Finally, two studies are presented that demonstrate the power of functional diversity as explanatory variable. It is interpreted as the range spanned by functional traits of the species that determine their interactions. This approach allows to mechanistically understand how the ecosystem functioning of food webs with multiple trophic levels is affected by all parts of the food web and why a high functional diversity is required for efficient transportation of energy from primary producers to the top predators. The general discussion draws some synthesising conclusions, e.g. on the predictive power of ecosystem functioning to explain diversity, and provides an outlook on future research directions.}, language = {en} } @article{SchittkoOnandiaBernardVerdieretal.2022, author = {Schittko, Conrad and Onandia, Gabriela and Bernard-Verdier, Maud and Heger, Tina and Jeschke, Jonathan M. and Kowarik, Ingo and Maaß, Stefanie and Joshi, Jasmin}, title = {Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems}, series = {Journal of ecology}, volume = {110}, journal = {Journal of ecology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.13852}, pages = {916 -- 934}, year = {2022}, abstract = {Biodiversity in urban ecosystems has the potential to increase ecosystem functions and support a suite of services valued by society, including services provided by soils. Specifically, the sequestration of carbon in soils has often been advocated as a solution to mitigate the steady increase in CO2 concentration in the atmosphere as a key driver of climate change. However, urban ecosystems are also characterized by an often high level of ecological novelty due to profound human-mediated changes, such as the presence of high numbers of non-native species, impervious surfaces or other disturbances. Yet it is poorly understood whether and how biodiversity affects ecosystem functioning and services of urban soils under these novel conditions. In this study, we assessed the influence of above- and below-ground diversity, as well as urbanization and plant invasions, on multifunctionality and organic carbon stocks of soils in non-manipulated grasslands along an urbanization gradient in Berlin, Germany. We focused on plant diversity (measured as species richness and functional trait diversity) and, in addition, on soil organism diversity as a potential mediator for the relationship of plant species diversity and ecosystem functioning. Our results showed positive effects of plant diversity on soil multifunctionality and soil organic carbon stocks along the entire gradient. Structural equation models revealed that plant diversity enhanced soil multifunctionality and soil organic carbon by increasing the diversity of below-ground organisms. These positive effects of plant diversity on soil multifunctionality and soil fauna were not restricted to native plant species only, but were also exerted by non-native species, although to a lesser degree. Synthesis. We conclude that enhancing diversity in plants and soil fauna of urban grasslands can increase the multifunctionality of urban soils and also add to their often underestimated but very valuable role in mitigating effects of climate change.}, language = {en} } @article{WojcikCeulemansGaedke2021, author = {Wojcik, Laurie Anne and Ceulemans, Ruben and Gaedke, Ursula}, title = {Functional diversity buffers the effects of a pulse perturbation on the dynamics of tritrophic food webs}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {22}, publisher = {John Wiley \& Sons, Inc.}, address = {Hoboken (New Jersey)}, issn = {2045-7758}, doi = {10.1002/ece3.8214}, pages = {15639 -- 15663}, year = {2021}, abstract = {Biodiversity decline causes a loss of functional diversity, which threatens ecosystems through a dangerous feedback loop: This loss may hamper ecosystems' ability to buffer environmental changes, leading to further biodiversity losses. In this context, the increasing frequency of human-induced excessive loading of nutrients causes major problems in aquatic systems. Previous studies investigating how functional diversity influences the response of food webs to disturbances have mainly considered systems with at most two functionally diverse trophic levels. We investigated the effects of functional diversity on the robustness, that is, resistance, resilience, and elasticity, using a tritrophic—and thus more realistic—plankton food web model. We compared a non-adaptive food chain with no diversity within the individual trophic levels to a more diverse food web with three adaptive trophic levels. The species fitness differences were balanced through trade-offs between defense/growth rate for prey and selectivity/half-saturation constant for predators. We showed that the resistance, resilience, and elasticity of tritrophic food webs decreased with larger perturbation sizes and depended on the state of the system when the perturbation occurred. Importantly, we found that a more diverse food web was generally more resistant and resilient but its elasticity was context-dependent. Particularly, functional diversity reduced the probability of a regime shift toward a non-desirable alternative state. The basal-intermediate interaction consistently determined the robustness against a nutrient pulse despite the complex influence of the shape and type of the dynamical attractors. This relationship was strongly influenced by the diversity present and the third trophic level. Overall, using a food web model of realistic complexity, this study confirms the destructive potential of the positive feedback loop between biodiversity loss and robustness, by uncovering mechanisms leading to a decrease in resistance, resilience, and potentially elasticity as functional diversity declines.}, language = {en} } @article{CeulemansGuillGaedke2021, author = {Ceulemans, Ruben and Guill, Christian and Gaedke, Ursula}, title = {Top predators govern multitrophic diversity effects in tritrophic food webs}, series = {Ecology : a publication of the Ecological Society of America}, volume = {102}, journal = {Ecology : a publication of the Ecological Society of America}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9658}, doi = {10.1002/ecy.3379}, pages = {16}, year = {2021}, abstract = {It is well known that functional diversity strongly affects ecosystem functioning. However, even in rather simple model communities consisting of only two or, at best, three trophic levels, the relationship between multitrophic functional diversity and ecosystem functioning appears difficult to generalize, because of its high contextuality. In this study, we considered several differently structured tritrophic food webs, in which the amount of functional diversity was varied independently on each trophic level. To achieve generalizable results, largely independent of parametrization, we examined the outcomes of 128,000 parameter combinations sampled from ecologically plausible intervals, with each tested for 200 randomly sampled initial conditions. Analysis of our data was done by training a random forest model. This method enables the identification of complex patterns in the data through partial dependence graphs, and the comparison of the relative influence of model parameters, including the degree of diversity, on food-web properties. We found that bottom-up and top-down effects cascade simultaneously throughout the food web, intimately linking the effects of functional diversity of any trophic level to the amount of diversity of other trophic levels, which may explain the difficulty in unifying results from previous studies. Strikingly, only with high diversity throughout the whole food web, different interactions synergize to ensure efficient exploitation of the available nutrients and efficient biomass transfer to higher trophic levels, ultimately leading to a high biomass and production on the top level. The temporal variation of biomass showed a more complex pattern with increasing multitrophic diversity: while the system initially became less variable, eventually the temporal variation rose again because of the increasingly complex dynamical patterns. Importantly, top predator diversity and food-web parameters affecting the top trophic level were of highest importance to determine the biomass and temporal variability of any trophic level. Overall, our study reveals that the mechanisms by which diversity influences ecosystem functioning are affected by every part of the food web, hampering the extrapolation of insights from simple monotrophic or bitrophic systems to complex natural food webs.}, language = {en} } @misc{WojcikCeulemansGaedke2021, author = {Wojcik, Laurie Anne and Ceulemans, Ruben and Gaedke, Ursula}, title = {Functional diversity buffers the effects of a pulse perturbation on the dynamics of tritrophic food webs}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1251}, issn = {1866-8372}, doi = {10.25932/publishup-55373}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553730}, pages = {25}, year = {2021}, abstract = {Biodiversity decline causes a loss of functional diversity, which threatens ecosystems through a dangerous feedback loop: This loss may hamper ecosystems' ability to buffer environmental changes, leading to further biodiversity losses. In this context, the increasing frequency of human-induced excessive loading of nutrients causes major problems in aquatic systems. Previous studies investigating how functional diversity influences the response of food webs to disturbances have mainly considered systems with at most two functionally diverse trophic levels. We investigated the effects of functional diversity on the robustness, that is, resistance, resilience, and elasticity, using a tritrophic—and thus more realistic—plankton food web model. We compared a non-adaptive food chain with no diversity within the individual trophic levels to a more diverse food web with three adaptive trophic levels. The species fitness differences were balanced through trade-offs between defense/growth rate for prey and selectivity/half-saturation constant for predators. We showed that the resistance, resilience, and elasticity of tritrophic food webs decreased with larger perturbation sizes and depended on the state of the system when the perturbation occurred. Importantly, we found that a more diverse food web was generally more resistant and resilient but its elasticity was context-dependent. Particularly, functional diversity reduced the probability of a regime shift toward a non-desirable alternative state. The basal-intermediate interaction consistently determined the robustness against a nutrient pulse despite the complex influence of the shape and type of the dynamical attractors. This relationship was strongly influenced by the diversity present and the third trophic level. Overall, using a food web model of realistic complexity, this study confirms the destructive potential of the positive feedback loop between biodiversity loss and robustness, by uncovering mechanisms leading to a decrease in resistance, resilience, and potentially elasticity as functional diversity declines.}, language = {en} } @article{SchittkoBernardVerdierHegeretal.2020, author = {Schittko, Conrad and Bernard-Verdier, Maud and Heger, Tina and Buchholz, Sascha and Kowarik, Ingo and von der Lippe, Moritz and Seitz, Birgit and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {A multidimensional framework for measuring biotic novelty: How novel is a community?}, series = {Global Change Biology}, volume = {26}, journal = {Global Change Biology}, number = {8}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {17}, year = {2020}, abstract = {Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non-native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non-native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non-native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.}, language = {en} } @misc{SchittkoBernardVerdierHegeretal.2020, author = {Schittko, Conrad and Bernard-Verdier, Maud and Heger, Tina and Buchholz, Sascha and Kowarik, Ingo and von der Lippe, Moritz and Seitz, Birgit and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {A multidimensional framework for measuring biotic novelty: How novel is a community?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-52565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525657}, pages = {19}, year = {2020}, abstract = {Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non-native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non-native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non-native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.}, language = {en} } @misc{RomeroMunozFandosBenitezLopezetal.2020, author = {Romero-Munoz, Alfredo and Fandos, Guillermo and Ben{\´i}tez-L{\´o}pez, Ana and Kuemmerle, Tobias}, title = {Habitat destruction and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-56769}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567696}, pages = {15}, year = {2020}, abstract = {Global biodiversity is under high and rising anthropogenic pressure. Yet, how the taxonomic, phylogenetic, and functional facets of biodiversity are affected by different threats over time is unclear. This is particularly true for the two main drivers of the current biodiversity crisis: habitat destruction and overexploitation. We provide the first long-term assessment of multifaceted biodiversity changes caused by these threats for any tropical region. Focussing on larger mammals in South America's 1.1 million km(2) Gran Chaco region, we assessed changes in multiple biodiversity facets between 1985 and 2015, determined which threats drive those changes, and identified remaining key areas for all biodiversity facets. Using habitat and threat maps, we found, first, that between 1985 and 2015 taxonomic (TD), phylogenetic (PD) and functional (FD) diversity all declined drastically across over half of the area assessed. FD declined about 50\% faster than TD and PD, and these declines were mainly driven by species loss, rather than species turnover. Second, habitat destruction, hunting, and both threats together contributed similar to 57\%, similar to 37\%, and similar to 6\% to overall facet declines, respectively. However, hunting pressure increased where TD and PD declined most strongly, whereas habitat destruction disproportionally contributed to FD declines. Third, just 23\% of the Chaco would have to be protected to safeguard the top 17\% of all three facets. Our findings uncover a widespread impoverishment of mammal species richness, evolutionary history, and ecological functions across broad areas of the Chaco due to increasing habitat destruction and hunting. Moreover, our results pinpoint key areas that should be preserved and managed to maintain all facets of mammalian diversity across the Chaco. More generally, our work highlights how long-term changes in biodiversity facets can be assessed and attributed to specific threats, to better understand human impacts on biodiversity and to guide conservation planning to mitigate them.}, language = {en} } @article{RomeroMunozFandosBenitezLopezetal.2020, author = {Romero-Munoz, Alfredo and Fandos, Guillermo and Ben{\´i}tez-L{\´o}pez, Ana and Kuemmerle, Tobias}, title = {Habitat destruction and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco}, series = {Global change biology}, volume = {27}, journal = {Global change biology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.15418}, pages = {755 -- 767}, year = {2020}, abstract = {Global biodiversity is under high and rising anthropogenic pressure. Yet, how the taxonomic, phylogenetic, and functional facets of biodiversity are affected by different threats over time is unclear. This is particularly true for the two main drivers of the current biodiversity crisis: habitat destruction and overexploitation. We provide the first long-term assessment of multifaceted biodiversity changes caused by these threats for any tropical region. Focussing on larger mammals in South America's 1.1 million km(2) Gran Chaco region, we assessed changes in multiple biodiversity facets between 1985 and 2015, determined which threats drive those changes, and identified remaining key areas for all biodiversity facets. Using habitat and threat maps, we found, first, that between 1985 and 2015 taxonomic (TD), phylogenetic (PD) and functional (FD) diversity all declined drastically across over half of the area assessed. FD declined about 50\% faster than TD and PD, and these declines were mainly driven by species loss, rather than species turnover. Second, habitat destruction, hunting, and both threats together contributed similar to 57\%, similar to 37\%, and similar to 6\% to overall facet declines, respectively. However, hunting pressure increased where TD and PD declined most strongly, whereas habitat destruction disproportionally contributed to FD declines. Third, just 23\% of the Chaco would have to be protected to safeguard the top 17\% of all three facets. Our findings uncover a widespread impoverishment of mammal species richness, evolutionary history, and ecological functions across broad areas of the Chaco due to increasing habitat destruction and hunting. Moreover, our results pinpoint key areas that should be preserved and managed to maintain all facets of mammalian diversity across the Chaco. More generally, our work highlights how long-term changes in biodiversity facets can be assessed and attributed to specific threats, to better understand human impacts on biodiversity and to guide conservation planning to mitigate them.}, language = {en} } @article{RochaGaedkeVasseur2011, author = {Rocha, Marcia R. and Gaedke, Ursula and Vasseur, David A.}, title = {Functionally similar species have similar dynamics}, series = {The journal of ecology}, volume = {99}, journal = {The journal of ecology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/j.1365-2745.2011.01893.x}, pages = {1453 -- 1459}, year = {2011}, abstract = {1. Improving the mechanistic basis of biodiversity-ecosystem function relationships requires a better understanding of how functional traits drive the dynamics of populations. For example, environmental disturbances or grazing may increase synchronization of functionally similar species, whereas functionally different species may show independent dynamics, because of different responses to the environment. Competition for resources, on the other hand, may yield a wide range of dynamic patterns among competitors and lead functionally similar and different species to display synchronized to compensatory dynamics. The mixed effect of these forces will influence the temporal fluctuations of populations and, thus, the variability of aggregate community properties. 2. To search for a relationship between functional and dynamics similarity, we studied the relationship between functional trait similarity and temporal dynamics similarity for 36 morphotypes of phytoplankton using long-term high-frequency measurements. 3. Our results show that functionally similar morphotypes exhibit dynamics that are more synchronized than those of functionally dissimilar ones. Functionally dissimilar morphotypes predominantly display independent temporal dynamics. This pattern is especially strong when short time-scales are considered. 4. Negative correlations are present among both functionally similar and dissimilar phytoplankton morphotypes, but are rarer and weaker than positive ones over all temporal scales. 5. Synthesis. We demonstrate that diversity in functional traits decreases community variability and ecosystem-level properties by decoupling the dynamics of individual morphotypes.}, language = {en} }