@phdthesis{Breitenstein2012, author = {Breitenstein, Michael}, title = {Ortsaufgel{\"o}ster Aufbau von DNA-Nanostrukturen auf Glasoberfl{\"a}chen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61857}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Im Fokus dieser Arbeit stand der Aufbau einer auf DNA basierenden Nanostruktur. Der universelle Vier-Buchstaben-Code der DNA erm{\"o}glicht es, Bindungen auf molekularer Ebene zu adressieren. Die chemischen und physikalischen Eigenschaften der DNA pr{\"a}destinieren dieses Makromolek{\"u}l f{\"u}r den Einsatz und die Verwendung als Konstruktionselement zum Aufbau von Nanostrukturen. Das Ziel dieser Arbeit war das Aufspannen eines DNA-Stranges zwischen zwei Fixpunkten. Hierf{\"u}r war es notwendig, eine Methode zu entwickeln, welche es erm{\"o}glicht, Funktionsmolek{\"u}le als Ankerelemente ortsaufgel{\"o}st auf eine Oberfl{\"a}che zu deponieren. Das Deponieren dieser Molek{\"u}le sollte dabei im unteren Mikrometermaßstab erfolgen, um den Abmaßen der DNA und der angestrebten Nanostruktur gerecht zu werden. Das eigens f{\"u}r diese Aufgabe entwickelte Verfahren zum ortsaufgel{\"o}sten Deponieren von Funktionsmolek{\"u}len nutzt das Bindungspaar Biotin-Neutravidin. Mit Hilfe eines Rasterkraftmikroskops (AFM) wurde eine zu einem „Stift" umfunktionierte Rasterkraftmikroskopspitze so mit der zu deponierenden „Tinte" beladen, dass das Absetzen von Neutravidin im unteren Mikrometermaßstab m{\"o}glich war. Dieses Neutravidinmolek{\"u}l {\"u}bernahm die Funktion als Bindeglied zwischen der biotinylierten Glasoberfl{\"a}che und dem eigentlichen Adressmolek{\"u}l. Das somit generierte Neutravidin-Feld konnte dann mit einem biotinylierten Adressmolek{\"u}l durch Inkubation funktionalisiert werden. Namensgebend f{\"u}r dieses Verfahren war die M{\"o}glichkeit, Neutravidin mehrmals zu deponieren und zu adressieren. Somit ließ sich sequenziell ein Mehrkomponenten-Feld aufbauen. Die Einschr{\"a}nkung, mit einem AFM nur eine Substanz deponieren zu k{\"o}nnen, wurde so umgangen. Ferner mußten Ankerelemente geschaffen werden, um die DNA an definierten Punkten immobilisieren zu k{\"o}nnen. Die Bearbeitung der DNA erfolgte mit molekularbiologischen Methoden und zielte darauf ab, einen DNA-Strang zu generieren, welcher an seinen beiden Enden komplement{\"a}re Adressequenzen enth{\"a}lt, um gezielt mit den oberfl{\"a}chenst{\"a}ndigen Ankerelementen binden zu k{\"o}nnen. Entsprechend der Geometrie der mit dem AFM erzeugten Fixpunkte und den oligonukleotidvermittelten Adressen kommt es zur Ausbildung einer definierten DNA-Struktur. Mit Hilfe von fluoreszenzmikroskopischen Methoden wurde die aufgebaute DNA-Nanostruktur nachgewiesen. Der Nachweis der nanoskaligen Interaktion von DNA-bindenden Molek{\"u}len mit der generierten DNA-Struktur wurde durch die Bindung von PNA (peptide nucleic acid) an den DNA-Doppelstrang erbracht. Diese PNA-Bindung stellt ihrerseits ein funktionales Strukturelement im Nanometermaßstab dar und wird als Nanostrukturbaustein verstanden.}, language = {de} } @misc{BreitensteinNielsenHoelzeletal.2011, author = {Breitenstein, Michael and Nielsen, Peter E. and H{\"o}lzel, Ralph and Bier, Frank Fabian}, title = {DNA-nanostructure-assembly by sequential spotting}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1027}, issn = {1866-8372}, doi = {10.25932/publishup-43110}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431108}, pages = {12}, year = {2011}, abstract = {Background: The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. Results: For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures. Conclusions: The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element.}, language = {en} }