@article{BaumannSalvaterraTakeyasu2010, author = {Baumann, Otto and Salvaterra, Paul M. and Takeyasu, Kunio}, title = {Developmental changes in beta-subunit composition of Na,K-ATPase in the Drosophila eye}, issn = {0302-766X}, doi = {10.1007/s00441-010-0948-x}, year = {2010}, abstract = {The Drosophila genome contains at least three loci for the Na,K-ATPase beta-subunit; however, only the protein products of nrv1 and nrv2 have been characterized hitherto. Here, we provide evidence that nrv3 also encodes for a functional Na,K-ATPase beta-subunit, as its protein product co-precipitates with the Na,K-ATPase alpha-subunit. Nrv3 expression in adult flies is restricted to the nervous system in which Nrv3 is enriched in selective types of sensory cells. Because Nrv3 expression is especially prominent in the compound eye, we have analyzed the subcellular and developmental distribution of Nrv3 within the visual cells and related this distribution to those of the alpha-subunit and of the beta-subunits Nrv1 and Nrv2. Prospective visual cells express Nrv2 in the third larval instar stage and during the first half of pupal development. During the last third of pupal life, Nrv3 gradually replaces Nrv2 as the Na,K-ATPase beta-subunit in the photoreceptor cells. Adult photoreceptors express Nrv3 as their major beta-subunit; the visual cells R1-R6 co-express Nrv2 at a low level, whereas R7 and R8 co-express Nrv1. Notably, beta-subunits do not co- distribute exactly with the alpha-subunit at some developmental stages, supporting the concept that the alpha-subunit and beta-subunit can exist in the plasma membrane without being engaged in alpha/beta heterodimers. The non-visual cells within the compound eye express almost exclusively Nrv2, which segregates together with the alpha-subunit to septate junctions throughout development.}, language = {en} } @article{YasuharaBaumannTakeyasu2000, author = {Yasuhara, Jiro and Baumann, Otto and Takeyasu, Kunio}, title = {Localization of Na/K-ATPase in developing and adult Drosophila melanogaster photoreceptors}, year = {2000}, abstract = {Drosophila melanogaster photoreceptors are highly polarized cells and their plasma membrane is organized into distinct domains. Zonula adherens junctions separate a smooth peripheral surface, the equivalent of the basolateral surface in other epithelial cells, from the central surface (cong apical surface). The latter consists of the microvillar rhabdomere and the juxtarhabdomeric domain, a nonmicrovillar area between the rhabdomere and the zonulae adherens. The distribution of Na/K-ATPase over these domains was examined by immunocytochemical, developmental, and genetic approaches. Immunofluorescence and immunogold labeling of adult compound eyes reveal that the distribution of Na/ K-ATPase is concentrated at the peripheral surface in the photoreceptors R1-R6, but extends over the juxtarhabdomeric domain to the rhabdomere in the photoreceptors R7/R8. Developmental analysis demonstrates further that Na/K-ATPase is localized over the entire plasma membrane in all photoreceptors in early pupal eyes. Redistribution of Na/K-ATPase in R1- R6 occurs at about 78\% of pupal life, coinciding with the onset of Rh1-rhodopsin expression on the central surface of these cells. Despite the essential role of Rh1 in structural development and intracellular trafficking, Rh1 mutations do not affect the distribution of Na/K-ATPase. These results suggest that Na/K-ATPase and rhodopsin are involved in distinct intracellular localization mechanisms, which are maintained independent of each other.}, language = {en} }