@article{FujikuraJingHanadaetal.2018, author = {Fujikura, Ushio and Jing, Runchun and Hanada, Atsushi and Takebayashi, Yumiko and Sakakibara, Hitoshi and Yamaguchi, Shinjiro and Kappel, Christian and Lenhard, Michael}, title = {Variation in splicing efficiency underlies morphological evolution in capsella}, series = {Developmental cell}, volume = {44}, journal = {Developmental cell}, number = {2}, publisher = {Cell Press}, address = {Cambridge}, issn = {1534-5807}, doi = {10.1016/j.devcel.2017.11.022}, pages = {192 -- 203}, year = {2018}, abstract = {Understanding the molecular basis of morphological change remains a central challenge in evolutionary-developmental biology. The transition from outbreeding to selfing is often associated with a dramatic reduction in reproductive structures and functions, such as the loss of attractive pheromones in hermaphroditic Caenorhabditis elegans and a reduced flower size in plants. Here, we demonstrate that variation in the level of the brassinosteroid-biosynthesis enzyme CYP724A1 contributes to the reduced flower size of selfing Capsella rubella compared with its outbreeding ancestor Capsella grandiflora. The primary transcript of the C. rubella allele is spliced more efficiently than that of C. grandiflora, resulting in higher brassinosteroid levels. These restrict organ growth by limiting cell proliferation. More efficient splicing of the C. rubella allele results from two de novo mutations in the selfing lineage. Thus, our results highlight the potentially widespread importance of differential splicing efficiency and higher-than-optimal hormone levels in generating phenotypic variation.}, language = {en} } @article{CuongNguyenHuuKappelKelleretal.2016, author = {Cuong Nguyen Huu, and Kappel, Christian and Keller, Barbara and Sicard, Adrien and Takebayashi, Yumiko and Breuninger, Holger and Nowak, Michael D. and B{\"a}urle, Isabel and Himmelbach, Axel and Burkart, Michael and Ebbing-Lohaus, Thomas and Sakakibara, Hitoshi and Altschmied, Lothar and Conti, Elena and Lenhard, Michael}, title = {Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses}, series = {eLife}, volume = {5}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.17956}, pages = {15}, year = {2016}, abstract = {Heterostyly is a wide-spread floral adaptation to promote outbreeding, yet its genetic basis and evolutionary origin remain poorly understood. In Primula (primroses), heterostyly is controlled by the S-locus supergene that determines the reciprocal arrangement of reproductive organs and incompatibility between the two morphs. However, the identities of the component genes remain unknown. Here, we identify the Primula CYP734A50 gene, encoding a putative brassinosteroid-degrading enzyme, as the G locus that determines the style-length dimorphism. CYP734A50 is only present on the short-styled S-morph haplotype, it is specifically expressed in S-morph styles, and its loss or inactivation leads to long styles. The gene arose by a duplication specific to the Primulaceae lineage and shows an accelerated rate of molecular evolution. Thus, our results provide a mechanistic explanation for the Primula style-length dimorphism and begin to shed light on the evolution of the S-locus as a prime model for a complex plant supergene.}, language = {en} }