@misc{StieglerLinsDammhahnetal.2022, author = {Stiegler, Jonas and Lins, Alisa and Dammhahn, Melanie and Kramer-Schadt, Stephanie and Ortmann, Sylvia and Blaum, Niels}, title = {Personality drives activity and space use in a mammalian herbivore}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-57732}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577327}, pages = {1 -- 12}, year = {2022}, abstract = {Background Animal personality has emerged as a key concept in behavioral ecology. While many studies have demonstrated the influence of personality traits on behavioral patterns, its quantification, especially in wild animal populations, remains a challenge. Only a few studies have established a link between personality and recurring movements within home ranges, although these small-scale movements are of key importance for identifying ecological interactions and forming individual niches. In this regard, differences in space use among individuals might reflect different exploration styles between behavioral types along the shy-bold continuum. Methods We assessed among-individual differences in behavior in the European hare (Lepus europaeus), a characteristic mammalian herbivore in agricultural landscapes using a standardized box emergence test for captive and wild hares. We determined an individuals' degree of boldness by measuring the latencies of behavioral responses in repeated emergence tests in captivity. During capture events of wild hares, we conducted a single emergence test and recorded behavioral responses proven to be stable over time in captive hares. Applying repeated novel environment tests in a near-natural enclosure, we further quantified aspects of exploration and activity in captive hares. Finally, we investigated whether and how this among-individual behavioral variation is related to general activity and space use in a wild hare population. Wild and captive hares were treated similarly and GPS-collared with internal accelerometers prior to release to the wild or the outdoor enclosure, respectively. General activity was quantified as overall dynamic body acceleration (ODBA) obtained from accelerometers. Finally, we tested whether boldness explained variation in (i) ODBA in both settings and (ii) variation in home ranges and core areas across different time scales of GPS-collared hares in a wild population. Results We found three behavioral responses to be consistent over time in captive hares. ODBA was positively related to boldness (i.e., short latencies to make first contact with the new environment) in both captive and wild hares. Space use in wild hares also varied with boldness, with shy individuals having smaller core areas and larger home ranges than bold conspecifics (yet in some of the parameter space, this association was just marginally significant). Conclusions Against our prediction, shy individuals occupied relatively large home ranges but with small core areas. We suggest that this space use pattern is due to them avoiding risky, and energy-demanding competition for valuable resources. Carefully validated, activity measurements (ODBA) from accelerometers provide a valuable tool to quantify aspects of animal personality along the shy-bold continuum remotely. Without directly observing—and possibly disturbing—focal individuals, this approach allows measuring variability in animal personality, especially in species that are difficult to assess with experiments. Considering that accelerometers are often already built into GPS units, we recommend activating them at least during the initial days of tracking to estimate individual variation in general activity and, if possible, match them with a simple novelty experiment. Furthermore, information on individual behavioral types will help to facilitate mechanistic understanding of processes that drive spatial and ecological dynamics in heterogeneous landscapes.}, language = {en} } @misc{HeringHauptfleischKramerSchadtetal.2022, author = {Hering, Robert and Hauptfleisch, Morgan and Kramer-Schadt, Stephanie and Stiegler, Jonas and Blaum, Niels}, title = {Effects of fences and fence gaps on the movement behavior of three southern African antelope species}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1308}, issn = {1866-8372}, doi = {10.25932/publishup-58267}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582672}, pages = {19}, year = {2022}, abstract = {Globally, migratory ungulates are affected by fences. While field observational studies reveal the amount of animal-fence interactions across taxa, GPS tracking-based studies uncover fence effects on movement patterns and habitat selection. However, studies on the direct effects of fences and fence gaps on movement behavior, especially based on high-frequency tracking data, are scarce. We used GPS tracking on three common African antelopes (Tragelaphus strepsiceros, Antidorcas marsupialis, and T. oryx) with movement strategies ranging from range residency to nomadism in a semi-arid, Namibian savanna traversed by wildlife-proof fences that elephants have regularly breached. We classified major forms of ungulate-fence interaction types on a seasonal and a daily scale. Furthermore, we recorded the distances and times spent at fences regarding the total individual space use. Based on this, we analyzed the direct effects of fences and fence gaps on the animals' movement behavior for the previously defined types of animal-fence interactions. Antelope-fence interactions peaked during the early hours of the day and during seasonal transitions when the limiting resource changed between water and forage. Major types of ungulate-fence interactions were quick, trace-like, or marked by halts. We found that the amount of time spent at fences was highest for nomadic eland. Migratory springbok adjusted their space use concerning fence gap positions. If the small home ranges of sedentary kudu included a fence, they frequently interacted with this fence. For springbok and eland, distance traveled along a fence declined with increasing utilization of a fence gap. All species reduced their speed in the proximity of a fence but often increased their speed when encountering the fence. Crossing a fence led to increased speeds for all species. We demonstrate that fence effects mainly occur during crucial foraging times (seasonal scale) and during times of directed movements (daily scale). Importantly, we provide evidence that fences directly alter antelope movement behaviors with negative implications for energy budgets and that persistent fence gaps can reduce the intensity of such alterations. Our findings help to guide future animal-fence studies and provide insights for wildlife fencing and fence gap planning.}, language = {en} } @misc{HeringHauptfleischJagoetal.2022, author = {Hering, Robert and Hauptfleisch, Morgan and Jago, Mark and Smith, Taylor and Kramer-Schadt, Stephanie and Stiegler, Jonas and Blaum, Niels}, title = {Don't stop me now: Managed fence gaps could allow migratory ungulates to track dynamic resources and reduce fence related energy loss}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1278}, issn = {1866-8372}, doi = {10.25932/publishup-57008}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570087}, pages = {18}, year = {2022}, abstract = {In semi-arid environments characterized by erratic rainfall and scattered primary production, migratory movements are a key survival strategy of large herbivores to track resources over vast areas. Veterinary Cordon Fences (VCFs), intended to reduce wildlife-livestock disease transmission, fragment large parts of southern Africa and have limited the movements of large wild mammals for over 60 years. Consequently, wildlife-fence interactions are frequent and often result in perforations of the fence, mainly caused by elephants. Yet, we lack knowledge about at which times fences act as barriers, how fences directly alter the energy expenditure of native herbivores, and what the consequences of impermeability are. We studied 2-year ungulate movements in three common antelopes (springbok, kudu, eland) across a perforated part of Namibia's VCF separating a wildlife reserve and Etosha National Park using GPS telemetry, accelerometer measurements, and satellite imagery. We identified 2905 fence interaction events which we used to evaluate critical times of encounters and direct fence effects on energy expenditure. Using vegetation type-specific greenness dynamics, we quantified what animals gained in terms of high quality food resources from crossing the VCF. Our results show that the perforation of the VCF sustains herbivore-vegetation interactions in the savanna with its scattered resources. Fence permeability led to peaks in crossing numbers during the first flush of woody plants before the rain started. Kudu and eland often showed increased energy expenditure when crossing the fence. Energy expenditure was lowered during the frequent interactions of ungulates standing at the fence. We found no alteration of energy expenditure when springbok immediately found and crossed fence breaches. Our results indicate that constantly open gaps did not affect energy expenditure, while gaps with obstacles increased motion. Closing gaps may have confused ungulates and modified their intended movements. While browsing, sedentary kudu's use of space was less affected by the VCF; migratory, mixed-feeding springbok, and eland benefited from gaps by gaining forage quality and quantity after crossing. This highlights the importance of access to vast areas to allow ungulates to track vital vegetation patches.}, language = {en} } @article{HeringHauptfleischJagoetal.2022, author = {Hering, Robert and Hauptfleisch, Morgan and Jago, Mark and Smith, Taylor and Kramer-Schadt, Stephanie and Stiegler, Jonas and Blaum, Niels}, title = {Don't stop me now: Managed fence gaps could allow migratory ungulates to track dynamic resources and reduce fence related energy loss}, series = {Frontiers in Ecology and Evolution}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2296-701X}, doi = {10.3389/fevo.2022.907079}, pages = {1 -- 18}, year = {2022}, abstract = {In semi-arid environments characterized by erratic rainfall and scattered primary production, migratory movements are a key survival strategy of large herbivores to track resources over vast areas. Veterinary Cordon Fences (VCFs), intended to reduce wildlife-livestock disease transmission, fragment large parts of southern Africa and have limited the movements of large wild mammals for over 60 years. Consequently, wildlife-fence interactions are frequent and often result in perforations of the fence, mainly caused by elephants. Yet, we lack knowledge about at which times fences act as barriers, how fences directly alter the energy expenditure of native herbivores, and what the consequences of impermeability are. We studied 2-year ungulate movements in three common antelopes (springbok, kudu, eland) across a perforated part of Namibia's VCF separating a wildlife reserve and Etosha National Park using GPS telemetry, accelerometer measurements, and satellite imagery. We identified 2905 fence interaction events which we used to evaluate critical times of encounters and direct fence effects on energy expenditure. Using vegetation type-specific greenness dynamics, we quantified what animals gained in terms of high quality food resources from crossing the VCF. Our results show that the perforation of the VCF sustains herbivore-vegetation interactions in the savanna with its scattered resources. Fence permeability led to peaks in crossing numbers during the first flush of woody plants before the rain started. Kudu and eland often showed increased energy expenditure when crossing the fence. Energy expenditure was lowered during the frequent interactions of ungulates standing at the fence. We found no alteration of energy expenditure when springbok immediately found and crossed fence breaches. Our results indicate that constantly open gaps did not affect energy expenditure, while gaps with obstacles increased motion. Closing gaps may have confused ungulates and modified their intended movements. While browsing, sedentary kudu's use of space was less affected by the VCF; migratory, mixed-feeding springbok, and eland benefited from gaps by gaining forage quality and quantity after crossing. This highlights the importance of access to vast areas to allow ungulates to track vital vegetation patches.}, language = {en} } @article{HeringHauptfleischKramerSchadtetal.2022, author = {Hering, Robert and Hauptfleisch, Morgan and Kramer-Schadt, Stephanie and Stiegler, Jonas and Blaum, Niels}, title = {Effects of fences and fence gaps on the movement behavior of three southern African antelope species}, series = {Frontiers in Conservation Science}, volume = {3}, journal = {Frontiers in Conservation Science}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2673-611X}, doi = {10.3389/fcosc.2022.959423}, pages = {1 -- 19}, year = {2022}, abstract = {Globally, migratory ungulates are affected by fences. While field observational studies reveal the amount of animal-fence interactions across taxa, GPS tracking-based studies uncover fence effects on movement patterns and habitat selection. However, studies on the direct effects of fences and fence gaps on movement behavior, especially based on high-frequency tracking data, are scarce. We used GPS tracking on three common African antelopes (Tragelaphus strepsiceros, Antidorcas marsupialis, and T. oryx) with movement strategies ranging from range residency to nomadism in a semi-arid, Namibian savanna traversed by wildlife-proof fences that elephants have regularly breached. We classified major forms of ungulate-fence interaction types on a seasonal and a daily scale. Furthermore, we recorded the distances and times spent at fences regarding the total individual space use. Based on this, we analyzed the direct effects of fences and fence gaps on the animals' movement behavior for the previously defined types of animal-fence interactions. Antelope-fence interactions peaked during the early hours of the day and during seasonal transitions when the limiting resource changed between water and forage. Major types of ungulate-fence interactions were quick, trace-like, or marked by halts. We found that the amount of time spent at fences was highest for nomadic eland. Migratory springbok adjusted their space use concerning fence gap positions. If the small home ranges of sedentary kudu included a fence, they frequently interacted with this fence. For springbok and eland, distance traveled along a fence declined with increasing utilization of a fence gap. All species reduced their speed in the proximity of a fence but often increased their speed when encountering the fence. Crossing a fence led to increased speeds for all species. We demonstrate that fence effects mainly occur during crucial foraging times (seasonal scale) and during times of directed movements (daily scale). Importantly, we provide evidence that fences directly alter antelope movement behaviors with negative implications for energy budgets and that persistent fence gaps can reduce the intensity of such alterations. Our findings help to guide future animal-fence studies and provide insights for wildlife fencing and fence gap planning.}, language = {en} } @article{StieglerLinsDammhahnetal.2022, author = {Stiegler, Jonas and Lins, Alisa and Dammhahn, Melanie and Kramer-Schadt, Stephanie and Ortmann, Sylvia and Blaum, Niels}, title = {Personality drives activity and space use in a mammalian herbivore}, series = {Movement Ecology}, volume = {10}, journal = {Movement Ecology}, publisher = {BioMed Central (BMC), Springer Nature}, address = {London}, issn = {2051-3933}, doi = {10.1186/s40462-022-00333-6}, pages = {12}, year = {2022}, abstract = {Background Animal personality has emerged as a key concept in behavioral ecology. While many studies have demonstrated the influence of personality traits on behavioral patterns, its quantification, especially in wild animal populations, remains a challenge. Only a few studies have established a link between personality and recurring movements within home ranges, although these small-scale movements are of key importance for identifying ecological interactions and forming individual niches. In this regard, differences in space use among individuals might reflect different exploration styles between behavioral types along the shy-bold continuum. Methods We assessed among-individual differences in behavior in the European hare (Lepus europaeus), a characteristic mammalian herbivore in agricultural landscapes using a standardized box emergence test for captive and wild hares. We determined an individuals' degree of boldness by measuring the latencies of behavioral responses in repeated emergence tests in captivity. During capture events of wild hares, we conducted a single emergence test and recorded behavioral responses proven to be stable over time in captive hares. Applying repeated novel environment tests in a near-natural enclosure, we further quantified aspects of exploration and activity in captive hares. Finally, we investigated whether and how this among-individual behavioral variation is related to general activity and space use in a wild hare population. Wild and captive hares were treated similarly and GPS-collared with internal accelerometers prior to release to the wild or the outdoor enclosure, respectively. General activity was quantified as overall dynamic body acceleration (ODBA) obtained from accelerometers. Finally, we tested whether boldness explained variation in (i) ODBA in both settings and (ii) variation in home ranges and core areas across different time scales of GPS-collared hares in a wild population. Results We found three behavioral responses to be consistent over time in captive hares. ODBA was positively related to boldness (i.e., short latencies to make first contact with the new environment) in both captive and wild hares. Space use in wild hares also varied with boldness, with shy individuals having smaller core areas and larger home ranges than bold conspecifics (yet in some of the parameter space, this association was just marginally significant). Conclusions Against our prediction, shy individuals occupied relatively large home ranges but with small core areas. We suggest that this space use pattern is due to them avoiding risky, and energy-demanding competition for valuable resources. Carefully validated, activity measurements (ODBA) from accelerometers provide a valuable tool to quantify aspects of animal personality along the shy-bold continuum remotely. Without directly observing—and possibly disturbing—focal individuals, this approach allows measuring variability in animal personality, especially in species that are difficult to assess with experiments. Considering that accelerometers are often already built into GPS units, we recommend activating them at least during the initial days of tracking to estimate individual variation in general activity and, if possible, match them with a simple novelty experiment. Furthermore, information on individual behavioral types will help to facilitate mechanistic understanding of processes that drive spatial and ecological dynamics in heterogeneous landscapes.}, language = {en} } @article{KuerschnerSchererRadchuketal.2021, author = {K{\"u}rschner, Tobias and Scherer, C{\´e}dric and Radchuk, Viktoriia and Blaum, Niels and Kramer-Schadt, Stephanie}, title = {Movement can mediate temporal mismatches between resource availability and biological events in host-pathogen interactions}, series = {Ecology and evolution}, volume = {11}, journal = {Ecology and evolution}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.7478}, pages = {5728 -- 5741}, year = {2021}, abstract = {Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species' populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host-pathogen systems. We adapted an established individual-based model of host-pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host's explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life-history events affect host-pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts' biological events. However, a temporal mismatch reduced host-pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat-dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host-pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change.}, language = {en} } @article{VoigtSchollBaueretal.2020, author = {Voigt, Christian and Scholl, Julia M. and Bauer, Juliane and Teige, Tobias and Yovel, Yossi and Kramer-Schadt, Stephanie and Gras, Pierre}, title = {Movement responses of common noctule bats to the illuminated urban landscape}, series = {Landscape ecology}, volume = {35}, journal = {Landscape ecology}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2973}, doi = {10.1007/s10980-019-00942-4}, pages = {189 -- 201}, year = {2020}, abstract = {Context Cities are a challenging habitat for obligate nocturnal mammals because of the ubiquitous use of artificial light at night (ALAN). How nocturnal animals move in an urban landscape, particularly in response to ALAN is largely unknown. Objectives We studied the movement responses, foraging and commuting, of common noctules (Nyctalus noctula) to urban landscape features in general and ALAN in particular. Methods We equipped 20 bats with miniaturized GPS loggers in the Berlin metropolitan area and related spatial positions of bats to anthropogenic and natural landscape features and levels of ALAN. Results Common noctules foraged close to ALAN only next to bodies of water or well vegetated areas, probably to exploit swarms of insects lured by street lights. In contrast, they avoided illuminated roads, irrespective of vegetation cover nearby. Predictive maps identified most of the metropolitan area as non-favoured by this species because of high levels of impervious surfaces and ALAN. Dark corridors were used by common noctules for commuting and thus likely improved the permeability of the city landscape. Conclusions We conclude that the spatial use of common noctules, previously considered to be more tolerant to light than other bats, is largely constrained by ALAN. Our study is the first individual-based GPS tracking study to show sensitive responses of nocturnal wildlife to light pollution. Approaches to protect urban biodiversity need to include ALAN to safeguard the larger network of dark habitats for bats and other nocturnal species in cities.}, language = {en} } @article{PremierFickelHeurichetal.2020, author = {Premier, Joseph and Fickel, J{\"o}rns and Heurich, Marco and Kramer-Schadt, Stephanie}, title = {The boon and bane of boldness}, series = {Movement Ecology}, volume = {8}, journal = {Movement Ecology}, number = {1}, publisher = {BioMed Central}, address = {London}, issn = {2051-3933}, doi = {10.1186/s40462-020-00204-y}, pages = {1 -- 17}, year = {2020}, abstract = {Background: Many felid species are of high conservation concern, and with increasing human disturbance the situation is worsening. Small isolated populations are at risk of genetic impoverishment decreasing within-species biodiversity. Movement is known to be a key behavioural trait that shapes both demographic and genetic dynamics and affects population survival. However, we have limited knowledge on how different manifestations of movement behaviour translate to population processes. In this study, we aimed to 1) understand the potential effects of movement behaviour on the genetic diversity of small felid populations in heterogeneous landscapes, while 2) presenting a simulation tool that can help inform conservation practitioners following, or considering, population management actions targeting the risk of genetic impoverishment. Methods: We developed a spatially explicit individual-based population model including neutral genetic markers for felids and applied this to the example of Eurasian lynx. Using a neutral landscape approach, we simulated reintroductions into a three-patch system, comprising two breeding patches separated by a larger patch of differing landscape heterogeneity, and tested for the effects of various behavioural movement syndromes and founder population sizes. We explored a range of movement syndromes by simulating populations with various movement model parametrisations that range from 'shy' to 'bold' movement behaviour. Results: We find that movement syndromes can lead to a higher loss of genetic diversity and an increase in between population genetic structure for both "bold" and "shy" movement behaviours, depending on landscape conditions, with larger decreases in genetic diversity and larger increases in genetic differentiation associated with bold movement syndromes, where the first colonisers quickly reproduce and subsequently dominate the gene pool. In addition, we underline the fact that a larger founder population can offset the genetic losses associated with subpopulation isolation and gene pool dominance. Conclusions We identified a movement syndrome trade-off for population genetic variation, whereby bold-explorers could be saviours - by connecting populations and promoting panmixia, or sinks - by increasing genetic losses via a 'founder takes all' effect, whereas shy-stayers maintain a more gradual genetic drift due to their more cautious behaviour. Simulations should incorporate movement behaviour to provide better projections of long-term population viability and within-species biodiversity, which includes genetic diversity. Simulations incorporating demographics and genetics have great potential for informing conservation management actions, such as population reintroductions or reinforcements. Here, we present such a simulation tool for solitary felids.}, language = {en} } @article{RadchukDeLaenderCabraletal.2019, author = {Radchuk, Viktoriia and De Laender, Frederik and Cabral, Juliano Sarmento and Boulangeat, Isabelle and Crawford, Michael Scott and Bohn, Friedrich and De Raedt, Jonathan and Scherer, Cedric and Svenning, Jens-Christian and Thonicke, Kirsten and Schurr, Frank M. and Grimm, Volker and Kramer-Schadt, Stephanie}, title = {The dimensionality of stability depends on disturbance type}, series = {Ecology letters}, volume = {22}, journal = {Ecology letters}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13226}, pages = {674 -- 684}, year = {2019}, abstract = {Ecosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems. A key question is how the kind of disturbance affects these correlations. We here investigated the effect of three disturbance types (random, species-specific, local) applied at four intensity levels, on the dimensionality of stability at the population and community level. We used previously parameterized models that represent five natural communities, varying in species richness and the number of trophic levels. We found that disturbance type but not intensity affected the dimensionality of stability and only at the population level. The dimensionality of stability also varied greatly among species and communities. Therefore, studying stability cannot be simplified to using a single metric and multi-dimensional assessments are still to be recommended.}, language = {en} }