@article{IonescuBizicKarnataketal.2022, author = {Ionescu, Danny and Bizic, Mina and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Kasada, Minoru and Berger, Stella A. and Nejstgaard, Jens Christian and Ryo, Masahiro and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {From microbes to mammals: Pond biodiversity homogenization across different land-use types in an agricultural landscape}, series = {Ecological monographs}, volume = {92}, journal = {Ecological monographs}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1523}, pages = {28}, year = {2022}, abstract = {Local biodiversity patterns are expected to strongly reflect variation in topography, land use, dispersal boundaries, nutrient supplies, contaminant spread, management practices, and other anthropogenic influences. Contrary to this expectation, studies focusing on specific taxa revealed a biodiversity homogenization effect in areas subjected to long-term intensive industrial agriculture. We investigated whether land use affects biodiversity levels and community composition (alpha- and beta-diversity) in 67 kettle holes (KH) representing small aquatic islands embedded in the patchwork matrix of a largely agricultural landscape comprising grassland, forest, and arable fields. These KH, similar to millions of standing water bodies of glacial origin, spread across northern Europe, Asia, and North America, are physico-chemically diverse and differ in the degree of coupling with their surroundings. We assessed aquatic and sediment biodiversity patterns of eukaryotes, Bacteria, and Archaea in relation to environmental features of the KH, using deep-amplicon-sequencing of environmental DNA (eDNA). First, we asked whether deep sequencing of eDNA provides a representative picture of KH aquatic biodiversity across the Bacteria, Archaea, and eukaryotes. Second, we investigated if and to what extent KH biodiversity is influenced by the surrounding land use. We hypothesized that richness and community composition will greatly differ in KH from agricultural land use compared with KH in grasslands and forests. Our data show that deep eDNA amplicon sequencing is useful for in-depth assessments of cross-domain biodiversity comprising both micro- and macro-organisms, but has limitations with respect to single-taxa conservation studies. Using this broad method, we show that sediment eDNA, integrating several years to decades, depicts the history of agricultural land-use intensification. Aquatic biodiversity was best explained by seasonality, whereas land-use type explained little of the variation. We concluded that, counter to our hypothesis, land use intensification coupled with landscape wide nutrient enrichment (including atmospheric deposition), groundwater connectivity between KH and organismal (active and passive) dispersal in the tight network of ponds, resulted in a biodiversity homogenization in the KH water, leveling off today's detectable differences in KH biodiversity between land-use types. These findings have profound implications for measures and management strategies to combat current biodiversity loss in agricultural landscapes worldwide.}, language = {en} } @article{BizicIonescuKarnataketal.2022, author = {Bizic, Mina and Ionescu, Danny and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Berger, Stella A. and Nejstgaard, Jens C. and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {Land-use type temporarily affects active pond community structure but not gene expression patterns}, series = {Molecular ecology}, volume = {31}, journal = {Molecular ecology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16348}, pages = {1716 -- 1734}, year = {2022}, abstract = {Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.}, language = {en} } @article{FaschingAkotoyeBižićetal.2020, author = {Fasching, Christina and Akotoye, Christian and Bižić, Mina and Fonvielle, Jeremy Andre and Ionescu, Danny and Mathavarajah, Sabateeshan and Zoccarato, Luca and Walsh, David A. and Grossart, Hans-Peter and Xenopoulos, Marguerite A.}, title = {Linking stream microbial community functional genes to dissolved organic matter and inorganic nutrients}, series = {Limnology and oceanography}, volume = {65}, journal = {Limnology and oceanography}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.11356}, pages = {S71 -- S87}, year = {2020}, abstract = {There is now increasing evidence for the importance of microbial regulation of biogeochemical cycling in streams. Resource availability shapes microbial community structure, but less is known about how landscape-mediated availability of nutrients and carbon can control microbial functions in streams. Using comparative metagenomics, we examined the relationship between microbial functional genes and composition of dissolved organic matter (DOM), nutrients, and suspended microbial communities in 11 streams, divided into three groups based on the predominant land cover category (agriculture, forested, or wetland). Using weighted gene co-occurrence network analysis, we identified clusters of functions related to DOM composition, agricultural land use, and/or wetland and forest land cover. Wetland-dominated streams were characterized by functions related to nitrogen metabolism and processing of aromatic carbon compounds, with strong positive correlations with dissolved organic carbon concentration and DOM aromaticity. Forested streams were characterized by metabolic functions related to monomer uptake and carbohydrates, such as mannose and fructose metabolism. In agricultural streams, microbial functions were correlated with more labile, protein-like DOM, PO4, and NO3, likely reflecting functional adaptation to labile DOM and higher nutrient concentrations. Distinct changes in the functional composition and loss of functional diversity of microorganisms became evident when comparing natural to agricultural catchments. Although all streams showed signs of functional redundancy, loss of species richness per function in agricultural catchments suggests that microbial functions in natural catchments may be more resilient to disturbance. Our results provide new insight into microbial community functions involved in nutrient and carbon biogeochemical cycles and their dependence on specific environmental settings.}, language = {en} } @article{SchornSalmanCarvalhoLittmannetal.2019, author = {Schorn, Sina and Salman-Carvalho, Verena and Littmann, Sten and Ionescu, Danny and Grossart, Hans-Peter and Cypionka, Heribert}, title = {Cell architecture of the giant sulfur bacterium achromatium oxaliferum}, series = {FEMS Microbiology Ecology}, volume = {96}, journal = {FEMS Microbiology Ecology}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1574-6941}, doi = {10.1093/femsec/fiz200}, pages = {1 -- 8}, year = {2019}, abstract = {Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes.}, language = {en} } @misc{SchornSalmanCarvalhoLittmannetal.2019, author = {Schorn, Sina and Salman-Carvalho, Verena and Littmann, Sten and Ionescu, Danny and Grossart, Hans-Peter and Cypionka, Heribert}, title = {Cell architecture of the giant sulfur bacterium achromatium oxaliferum}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-54993}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549935}, pages = {10}, year = {2019}, abstract = {Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes.}, language = {en} } @article{GuenthelDonisKirillinetal.2019, author = {G{\"u}nthel, Marco and Donis, Daphne and Kirillin, Georgiy and Ionescu, Danny and Bizic, Mina and McGinnis, Daniel F. and Grossart, Hans-Peter and Tang, Kam W.}, title = {Contribution of oxic methane production to surface methane emission in lakes and its global importance}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-13320-0}, pages = {10}, year = {2019}, abstract = {Recent discovery of oxic methane production in sea and lake waters, as well as wetlands, demands re-thinking of the global methane cycle and re-assessment of the contribution of oxic waters to atmospheric methane emission. Here we analysed system-wide sources and sinks of surface-water methane in a temperate lake. Using a mass balance analysis, we show that internal methane production in well-oxygenated surface water is an important source for surface-water methane during the stratified period. Combining our results and literature reports, oxic methane contribution to emission follows a predictive function of littoral sediment area and surface mixed layer volume. The contribution of oxic methane source(s) is predicted to increase with lake size, accounting for the majority (>50\%) of surface methane emission for lakes with surface areas >1 km(2).}, language = {en} } @article{BizicIonescuIonescuGrossart2018, author = {Bizic-Ionescu, Mina and Ionescu, Danny and Grossart, Hans-Peter}, title = {Organic Particles: Heterogeneous Hubs for Microbial Interactions in Aquatic Ecosystems}, series = {Frontiers in microbiology}, volume = {9}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2018.02569}, pages = {15}, year = {2018}, abstract = {The dynamics and activities of microbes colonizing organic particles (hereafter particles) greatly determine the efficiency of the aquatic carbon pump. Current understanding is that particle composition, structure and surface properties, determined mostly by the forming organisms and organic matter, dictate initial microbial colonization and the subsequent rapid succession events taking place as organic matter lability and nutrient content change with microbial degradation. We applied a transcriptomic approach to assess the role of stochastic events on initial microbial colonization of particles. Furthermore, we asked whether gene expression corroborates rapid changes in carbon-quality. Commonly used size fractionated filtration averages thousands of particles of different sizes, sources, and ages. To overcome this drawback, we used replicate samples consisting each of 3-4 particles of identical source and age and further evaluated the consequences of averaging 10-1000s of particles. Using flow-through rolling tanks we conducted long-term experiments at near in situ conditions minimizing the biasing effects of closed incubation approaches often referred to as "the bottle-effect." In our open flow-through rolling tank system, however, active microbial communities were highly heterogeneous despite an identical particle source, suggesting random initial colonization. Contrasting previous reports using closed incubation systems, expression of carbon utilization genes didn't change after 1 week of incubation. Consequently, we suggest that in nature, changes in particle-associated community related to carbon availability are much slower (days to weeks) due to constant supply of labile, easily degradable organic matter. Initial, random particle colonization seems to be subsequently altered by multiple organismic interactions shaping microbial community interactions and functional dynamics. Comparative analysis of thousands particles pooled togethers as well as pooled samples suggests that mechanistic studies of microbial dynamics should be done on single particles. The observed microbial heterogeneity and inter-organismic interactions may have important implications for evolution and biogeochemistry in aquatic systems.}, language = {en} } @article{CuadratIonescuDavilaetal.2018, author = {Cuadrat, Rafael R. C. and Ionescu, Danny and Davila, Alberto M. R. and Grossart, Hans-Peter}, title = {Recovering genomics clusters of secondary metabolites from lakes using genome-resolved metagenomics}, series = {Frontiers in microbiology}, volume = {9}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2018.00251}, pages = {13}, year = {2018}, abstract = {Metagenomic approaches became increasingly popular in the past decades due to decreasing costs of DNA sequencing and bioinformatics development. So far, however, the recovery of long genes coding for secondary metabolites still represents a big challenge. Often, the quality of metagenome assemblies is poor, especially in environments with a high microbial diversity where sequence coverage is low and complexity of natural communities high. Recently, new and improved algorithms for binning environmental reads and contigs have been developed to overcome such limitations. Some of these algorithms use a similarity detection approach to classify the obtained reads into taxonomical units and to assemble draft genomes. This approach, however, is quite limited since it can classify exclusively sequences similar to those available (and well classified) in the databases. In this work, we used draft genomes from Lake Stechlin, north-eastern Germany, recovered by MetaBat, an efficient binning tool that integrates empirical probabilistic distances of genome abundance, and tetranucleotide frequency for accurate metagenome binning. These genomes were screened for secondary metabolism genes, such as polyketide synthases (PKS) and non-ribosomal peptide synthases (NRPS), using the Anti-SMASH and NAPDOS workflows. With this approach we were able to identify 243 secondary metabolite clusters from 121 genomes recovered from our lake samples. A total of 18 NRPS, 19 PKS, and 3 hybrid PKS/NRPS clusters were found. In addition, it was possible to predict the partial structure of several secondary metabolite clusters allowing for taxonomical classifications and phylogenetic inferences. Our approach revealed a high potential to recover and study secondary metabolites genes from any aquatic ecosystem.}, language = {en} } @article{IonescuBizicIonescuDeMaioetal.2017, author = {Ionescu, Danny and Bizic-Ionescu, Mina and De Maio, Nicola and Cypionka, Heribert and Grossart, Hans-Peter}, title = {Community-like genome in single cells of the sulfur bacterium Achromatium oxaliferum}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-017-00342-9}, pages = {9193 -- 9205}, year = {2017}, language = {en} } @misc{TangMcGinnisIonescuetal.2016, author = {Tang, Kam W. and McGinnis, Daniel F. and Ionescu, Danny and Großart, Hans-Peter}, title = {Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {3}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {American Chemical Society}, address = {Washington}, issn = {2328-8930}, doi = {10.1021/acs.estlett.6b00150}, pages = {227 -- 233}, year = {2016}, abstract = {Active methane production in oxygenated lake waters challenges the long-standing paradigm that microbial methane production occurs only under anoxic conditions and forces us to rethink the ecology and environmental dynamics of this powerful greenhouse gas. Methane production in the upper oxic water layers places the methane source closer to the air water interface, where convective mixing and microbubble detrainment can lead to a methane efflux higher than that previously assumed. Microorganisms may produce methane in oxic environments by being equipped with enzymes to counteract the effects of molecular oxygen during methanogenesis or using alternative pathways that do not involve oxygen-sensitive enzymes. As this process appears to be influenced by thermal stratification, water transparency, and primary production, changes in lake ecology due to climate change will alter methane formation in oxic water layers, with far-reaching consequences for methane flux and climate feedback.}, language = {en} }