@article{GabsiHammersWirtzGrimmetal.2014, author = {Gabsi, Faten and Hammers-Wirtz, Monika and Grimm, Volker and Schaeffer, Andreas and Preuss, Thomas G.}, title = {Coupling different mechanistic effect models for capturing individual- and population-level effects of chemicals: Lessons from a case where standard risk assessment failed}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {280}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2013.06.018}, pages = {18 -- 29}, year = {2014}, abstract = {Current environmental risk assessment (ERA) of chemicals for aquatic invertebrates relies on standardized laboratory tests in which toxicity effects on individual survival, growth and reproduction are measured. Such tests determine the threshold concentration of a chemical below which no population-level effects are expected. How well this procedure captures effects on individuals and populations, however, remains an open question. Here we used mechanistic effect models, combining individual-level reproduction and survival models with an individual-based population model (IBM), to understand the individuals' responses and extrapolate them to the population level. We used a toxicant (Dispersogen A) for which adverse effects on laboratory populations were detected at the determined threshold concentration and thus challenged the conservatism of the current risk assessment method. Multiple toxicity effects on reproduction and survival were reported, in addition to effects on the F1 generation. We extrapolated commonly tested individual toxicity endpoints, reproduction and survival, to the population level using the IBM. Effects on reproduction were described via regression models. To select the most appropriate survival model, the IBM was run assuming either stochastic death (SD) or individual tolerance (IT). Simulations were run for different scenarios regarding the toxicant's effects: survival toxicity, reproductive toxicity, or survival and reproductive toxicity. As population-level endpoints, we used population size and structure and extinction risk. We found that survival represented as SD explained population dynamics better than IT. Integrating toxicity effects on both reproduction and survival yielded more accurate predictions of population effects than considering isolated effects. To fully capture population effects observed at high toxicant concentrations, toxicity effects transmitted to the F1 generation had to be integrated. Predicted extinction risk was highly sensitive to the assumptions about individual-level effects. Our results demonstrate that the endpoints used in current standard tests may not be sufficient for assessing the risk of adverse effects on populations. A combination of laboratory population experiments with mechanistic effect models is a powerful tool to better understand and predict effects on both individuals and populations. Mechanistic effect modelling thus holds great potential to improve the accuracy of ERA of chemicals in the future. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{MartinJagerNisbetetal.2013, author = {Martin, Benjamin T. and Jager, Tjalling and Nisbet, Roger M. and Preuss, Thomas G. and Hammers-Wirtz, Monika and Grimm, Volker}, title = {Extrapolating ecotoxicological effects from individuals to populations - a generic approach based on Dynamic Energy Budget theory and individual-based modeling}, series = {Ecotoxicology}, volume = {22}, journal = {Ecotoxicology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0963-9292}, doi = {10.1007/s10646-013-1049-x}, pages = {574 -- 583}, year = {2013}, abstract = {Individual-based models (IBMs) predict how dynamics at higher levels of biological organization emerge from individual-level processes. This makes them a particularly useful tool for ecotoxicology, where the effects of toxicants are measured at the individual level but protection goals are often aimed at the population level or higher. However, one drawback of IBMs is that they require significant effort and data to design for each species. A solution would be to develop IBMs for chemical risk assessment that are based on generic individual-level models and theory. Here we show how one generic theory, Dynamic Energy Budget (DEB) theory, can be used to extrapolate the effect of toxicants measured at the individual level to effects on population dynamics. DEB is based on first principles in bioenergetics and uses a common model structure to model all species. Parameterization for a certain species is done at the individual level and allows to predict population-level effects of toxicants for a wide range of environmental conditions and toxicant concentrations. We present the general approach, which in principle can be used for all animal species, and give an example using Daphnia magna exposed to 3,4-dichloroaniline. We conclude that our generic approach holds great potential for standardized ecological risk assessment based on ecological models. Currently, available data from standard tests can directly be used for parameterization under certain circumstances, but with limited extra effort standard tests at the individual would deliver data that could considerably improve the applicability and precision of extrapolation to the population level. Specifically, the measurement of a toxicant's effect on growth in addition to reproduction, and presenting data over time as opposed to reporting a single EC50 or dose response curve at one time point.}, language = {en} }