@article{PetrichDunsingBoboneetal.2021, author = {Petrich, Annett and Dunsing, Valentin and Bobone, Sara and Chiantia, Salvatore}, title = {Influenza A M2 recruits M1 to the plasma membrane}, series = {Biophysical journal : BJ / ed. by the Biophysical Society}, volume = {120}, journal = {Biophysical journal : BJ / ed. by the Biophysical Society}, number = {24}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2021.11.023}, pages = {5478 -- 5490}, year = {2021}, abstract = {Influenza A virus (IAV) is a respiratory pathogen that causes seasonal epidemics with significant mortality. One of the most abundant proteins in IAV particles is the matrix protein 1 (M1), which is essential for the virus structural stability. M1 organizes virion assembly and budding at the plasma membrane (PM), where it interacts with other viral components. The recruitment of M1 to the PM as well as its interaction with the other viral envelope proteins (hemagglutinin [HA], neuraminidase, matrix protein 2 [M2]) is controversially discussed in previous studies. Therefore, we used fluorescence fluctuation microscopy techniques (i.e., scanning fluorescence cross-correlation spectroscopy and number and brightness) to quantify the oligomeric state of M1 and its interactions with other viral proteins in co-transfected as well as infected cells. Our results indicate that M1 is recruited to the PM by M2, as a consequence of the strong interaction between the two proteins. In contrast, only a weak interaction between M1 and HA was observed. M1-HA interaction occurred only in the event that M1 was already bound to the PM. We therefore conclude that M2 initiates the assembly of IAV by recruiting M1 to the PM, possibly allowing its further interaction with other viral proteins.}, language = {en} } @misc{HoeferDiLellaDahmanietal.2019, author = {H{\"o}fer, Chris Tina and Di Lella, Santiago and Dahmani, Ismail and Jungnick, Nadine and Bordag, Natalie and Bobone, Sara and Huan, Q. and Keller, S. and Herrmann, A. and Chiantia, Salvatore}, title = {Corrigendum to: Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes (Biochimica et Biophysica Acta (BBA) - Biomembranes. - 1861, (2019), pg 1123-1134)}, series = {Biochimica et biophysica acta : Biomembranes}, volume = {1861}, journal = {Biochimica et biophysica acta : Biomembranes}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2736}, doi = {10.1016/j.bbamem.2019.07.002}, pages = {1}, year = {2019}, language = {en} } @article{HoeferDiLellaDahmanietal.2019, author = {H{\"o}fer, C. T. and Di Lella, S. and Dahmani, Ismail and Jungnick, N. and Bordag, N. and Bobone, Sara and Huang, Q. and Keller, S. and Herrmann, A. and Chiantia, Salvatore}, title = {Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes}, series = {Biochimica et biophysica acta : Biomembranes}, volume = {1861}, journal = {Biochimica et biophysica acta : Biomembranes}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2736}, doi = {10.1016/j.bbamem.2019.03.013}, pages = {1123 -- 1134}, year = {2019}, abstract = {Influenza A virus is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. One of the ten major proteins encoded by the viral genome, the matrix protein M1, is abundantly produced in infected cells and plays a structural role in determining the morphology of the virus. During assembly of new viral particles, M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. The structure of M1 is only partially known. In particular, structural details of M1 interactions with the cellular plasma membrane as well as M1 protein interactions and multimerization have not been clarified, yet. In this work, we employed a set of complementary experimental and theoretical tools to tackle these issues. Using raster image correlation, surface plasmon resonance and circular dichroism spectroscopies, we quantified membrane association and oligomerization of full-length M1 and of different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region, residues 95-105). Furthermore, we report novel information on structural changes in M1 occurring upon binding to membranes. Our experimental results are corroborated by an all-atom model of the full-length M1 protein bound to a negatively charged lipid bilayer.}, language = {en} } @article{BoboneHilschStormetal.2017, author = {Bobone, Sara and Hilsch, Malte and Storm, Julian and Dunsing, Valentin and Herrmann, Andreas and Chiantia, Salvatore}, title = {Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes}, series = {Journal of virology}, volume = {91}, journal = {Journal of virology}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0022-538X}, doi = {10.1128/JVI.00267-17}, pages = {15}, year = {2017}, abstract = {Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Forster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N\&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N\&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still not well understood. In this work, we show that phosphatidylserine can form lipid domains in physical models of the inner leaflet of the PM. Furthermore, the spatial organization of PS in the plane of the bilayer modulates M1-M1 interactions. Finally, we show that PS domains appear to be present in the PM of living cells and that M1 seems to display a high affinity for them.}, language = {en} }