@article{KehmJaehnertDeubeletal.2020, author = {Kehm, Richard and J{\"a}hnert, Markus and Deubel, Stefanie and Flore, Tanina and K{\"o}nig, Jeannette and Jung, Tobias and Stadion, Mandy and Jonas, Wenke and Sch{\"u}rmann, Annette and Grune, Tilman and H{\"o}hn, Annika}, title = {Redox homeostasis and cell cycle activation mediate beta-cell mass expansion in aged, diabetes-prone mice under metabolic stress conditions: role of thioredoxin-interacting protein (TXNIP)}, series = {Redox Biology}, volume = {37}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-2317}, doi = {10.1016/j.redox.2020.101748}, pages = {11}, year = {2020}, abstract = {Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetesprone NZO mice.}, language = {en} }