@phdthesis{Streich2015, author = {Streich, David}, title = {Understanding massive disk galaxy formation through resolved stellar populations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81027}, school = {Universit{\"a}t Potsdam}, pages = {ix, 140}, year = {2015}, abstract = {In this thesis we utilize resolved stellar populations to improve our understanding of galaxy formation and evolution. In the first part we improve a method for metallicity determination of faint old stellar systems, in the second and third part we analyze the individual history of six nearby disk galaxies outside the Local Group. A New Calibration of the Color Metallicity Relation of Red Giants for HST data: It is well known, that the color distribution of stars on the the Red Giant Branch (RGB) can be used to determine metallicities of old stellar populations that have only shallow photometry. Based on the largest sample of globular clusters ever used for such studies, we quantify the relation between metallicity and color in the widely used HST ACS filters F606W and F814W. We use a sample of globular clusters from the ACS Globular Cluster Survey and measure their RGB color at given absolute magnitudes to derive the color-metallicity relation. We find a clear relation between metallicity and RGB color; we investigate the scatter and the uncertainties in this relation and show its limitations. A comparison with isochrones shows reasonably good agreement with BaSTI models, a small offset to Dartmouth models, and a larger offset to Padua models. Even for the best globular cluster data available, the metallicity of a simple stellar population can be determined from the RGB alone only with an accuracy of 0.3 dex for [M/H]<-1, and 0.15 dex for [M/H]>-1. For mixed populations, as they are observed in external galaxies, the uncertainties will be even larger due to uncertainties in extinction, age, etc. Therefore caution is necessary when interpreting photometric metallicities. The Structural History of Nearby Low Mass Disk Galaxies: We study the individual evolution histories of three nearby, low-mass, edge-on galaxies (IC5052, NGC4244, NGC5023). Using the color magnitude diagrams of resolved stellar populations, we construct star count density maps for populations of different ages and analyze the change of structural parameters with stellar age within each galaxy. The three galaxies show low vertical heating rates, which are much lower than the heating rate of the Milky Way. This indicates that heating agents, as giant molecular clouds and spiral structure are weak in low mass galaxies. We do not detect a separate thick disk in any of the three galaxies, even though our observations cover a larger range in equivalent surface brightness than any integrated light study. While scaleheights increase with age, each population can be well described by a single disk. Only two of the galaxies contain a very weak additional component, which we identify as the faint halo. The mass of these faint halos is less than 1\% of the mass of the disk. All populations in the three galaxies exhibit no or only little flaring. While this finding is consistent with previous integrated light studies, it poses strong constraints on galaxy formation models, because most theoretical simulations often find strong flaring due to interactions or radial migration. Furthermore, we find breaks in the radial profiles of all three galaxies. The radii of these breaks are independent of age, and the break strength is decreasing with age in two of the galaxies (NGC4244 and NGC5023). This is consistent with break formation models, that combine a star formation cutoff with radial migration. The differing behavior of IC5052 can be explained by a recent interaction or minor merger. The Structural History of Massive Disk Galaxies: We extend the structural analysis of stellar populations with distinct ages to three massive galaxies, NGC891, NGC4565 and NGC7814. While confusion effects due to the high stellar number densities in their central region, and the prominent dust lanes inhibit an detailed analysis of the radial profiles, we can study their vertical structure. These massive galaxies also have a slower heating than the Milky Way, comparable to the low mass galaxies. This can be traced back to their already thick young populations and thick layers of their interstellar medium. We do not find a clear separate thick disk in any of these three galaxies; all populations can be described by a single disk plus a S\'ersic bulge/halo component. In contrast to the low mass galaxies, we cannot rule out the presence of thick disks in the massive galaxies, because of the strong influence of the halo, that might hide the possible contribution of the thick disk to the vertical star count profiles. However, the faintness of the possible thick disks still points to problems in the earlier ubiquitous findings of thick disks in external galaxies.}, language = {en} }