@phdthesis{Hildebrandt2015, author = {Hildebrandt, Dominik}, title = {The HI Lyman-alpha opacity at redshift 2.7 < z < 3.6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78355}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 292}, year = {2015}, abstract = {Most of the baryonic matter in the Universe resides in a diffuse gaseous phase in-between galaxies consisting mostly of hydrogen and helium. This intergalactic medium (IGM) is distributed in large-scale filaments as part of the overall cosmic web. The luminous extragalactic objects that we can observe today, such as galaxies and quasars, are surrounded by the IGM in the most dense regions within the cosmic web. The radiation of these objects contributes to the so-called ultraviolet background (UVB) which keeps the IGM highly ionized ever since the epoch of reionization. Measuring the amount of absorption due to intergalactic neutral hydrogen (HI) against extragalactic background sources is a very useful tool to constrain the energy input of ionizing sources into the IGM. Observations suggest that the HI Lyman-alpha effective optical depth, τ_eff, decreases with decreasing redshift, which is primarily due to the expansion of the Universe. However, some studies find a smaller value of the effective optical depth than expected at the specific redshift z~3.2, possibly related to the complete reionization of helium in the IGM and a hardening of the UVB. The detection and possible cause of a decrease in τ_eff at z~3.2 is controversially debated in the literature and the observed features need further explanation. To better understand the properties of the mean absorption at high redshift and to provide an answer for whether the detection of a τ_eff feature is real we study 13 high-resolution, high signal-to-noise ratio quasar spectra observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the Very Large Telescope (VLT). The redshift evolution of the effective optical depth, τ_eff(z), is measured in the redshift range 2.7≤z≤3.6. The influence of metal absorption features is removed by performing a comprehensive absorption-line-fitting procedure. In the first part of the thesis, a line-parameter analysis of the column density, N, and Doppler parameter, b, of ≈7500 individually fitted absorption lines is performed. The results are in good agreement with findings from previous surveys. The second (main) part of this thesis deals with the analysis of the redshift evolution of the effective optical depth. The τ_eff measurements vary around the empirical power law τ_eff(z)~(1+z)^(γ+1) with γ=2.09±0.52. The same analysis as for the observed spectra is performed on synthetic absorption spectra. From a comparison between observed and synthetic spectral data it can be inferred that the uncertainties of the τ_eff values are likely underestimated and that the scatter is probably caused by high-column-density absorbers with column densities in the range 15≤logN≤17. In the real Universe, such absorbers are rarely observed, however. Hence, the difference in τ_eff from different observational data sets and absorption studies is most likely caused by cosmic variance. If, alternatively, the disagreement between such data is a result of an too optimistic estimate of the (systematic) errors, it is also possible that all τ_eff measurements agree with a smooth evolution within the investigated redshift range. To explore in detail the different analysis techniques of previous studies an extensive literature comparison to the results of this work is presented in this thesis. Although a final explanation for the occurrence of the τ_eff deviation in different studies at z~3.2 cannot be given here, our study, which represents the most detailed line-fitting analysis of its kind performed at the investigated redshifts so far, represents another important benchmark for the characterization of the HI Ly-alpha effective optical depth at high redshift and its indicated unusual behavior at z~3.2.}, language = {en} }