@article{DalleauKramerSchadtGangatetal.2019, author = {Dalleau, Mayeul and Kramer-Schadt, Stephanie and Gangat, Yassine and Bourjea, Jerome and Lajoie, Gilles and Grimm, Volker}, title = {Modeling the emergence of migratory corridors and foraging hot spots of the green sea turtle}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {18}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5552}, pages = {10317 -- 10342}, year = {2019}, abstract = {Environmental factors shape the spatial distribution and dynamics of populations. Understanding how these factors interact with movement behavior is critical for efficient conservation, in particular for migratory species. Adult female green sea turtles, Chelonia mydas, migrate between foraging and nesting sites that are generally separated by thousands of kilometers. As an emblematic endangered species, green turtles have been intensively studied, with a focus on nesting, migration, and foraging. Nevertheless, few attempts integrated these behaviors and their trade-offs by considering the spatial configurations of foraging and nesting grounds as well as environmental heterogeneity like oceanic currents and food distribution. We developed an individual-based model to investigate the impact of local environmental conditions on emerging migratory corridors and reproductive output and to thereby identify conservation priority sites. The model integrates movement, nesting, and foraging behavior. Despite being largely conceptual, the model captured realistic movement patterns which confirm field studies. The spatial distribution of migratory corridors and foraging hot spots was mostly constrained by features of the regional landscape, such as nesting site locations, distribution of feeding patches, and oceanic currents. These constraints also explained the mixing patterns in regional forager communities. By implementing alternative decision strategies of the turtles, we found that foraging site fidelity and nesting investment, two characteristics of green turtles' biology, are favorable strategies under unpredictable environmental conditions affecting their habitats. Based on our results, we propose specific guidelines for the regional conservation of green turtles as well as future research suggestions advancing spatial ecology of sea turtles. Being implemented in an easy to learn open-source software, our model can coevolve with the collection and analysis of new data on energy budget and movement into a generic tool for sea turtle research and conservation. Our modeling approach could also be useful for supporting the conservation of other migratory marine animals.}, language = {en} } @phdthesis{Teckentrup2019, author = {Teckentrup, Lisa}, title = {Understanding predator-prey interactions}, doi = {10.25932/publishup-43162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431624}, school = {Universit{\"a}t Potsdam}, pages = {ix, 133}, year = {2019}, abstract = {Predators can have numerical and behavioral effects on prey animals. While numerical effects are well explored, the impact of behavioral effects is unclear. Furthermore, behavioral effects are generally either analyzed with a focus on single individuals or with a focus on consequences for other trophic levels. Thereby, the impact of fear on the level of prey communities is overlooked, despite potential consequences for conservation and nature management. In order to improve our understanding of predator-prey interactions, an assessment of the consequences of fear in shaping prey community structures is crucial. In this thesis, I evaluated how fear alters prey space use, community structure and composition, focusing on terrestrial mammals. By integrating landscapes of fear in an existing individual-based and spatially-explicit model, I simulated community assembly of prey animals via individual home range formation. The model comprises multiple hierarchical levels from individual home range behavior to patterns of prey community structure and composition. The mechanistic approach of the model allowed for the identification of underlying mechanism driving prey community responses under fear. My results show that fear modified prey space use and community patterns. Under fear, prey animals shifted their home ranges towards safer areas of the landscape. Furthermore, fear decreased the total biomass and the diversity of the prey community and reinforced shifts in community composition towards smaller animals. These effects could be mediated by an increasing availability of refuges in the landscape. Under landscape changes, such as habitat loss and fragmentation, fear intensified negative effects on prey communities. Prey communities in risky environments were subject to a non-proportional diversity loss of up to 30\% if fear was taken into account. Regarding habitat properties, I found that well-connected, large safe patches can reduce the negative consequences of habitat loss and fragmentation on prey communities. Including variation in risk perception between prey animals had consequences on prey space use. Animals with a high risk perception predominantly used safe areas of the landscape, while animals with a low risk perception preferred areas with a high food availability. On the community level, prey diversity was higher in heterogeneous landscapes of fear if individuals varied in their risk perception compared to scenarios in which all individuals had the same risk perception. Overall, my findings give a first, comprehensive assessment of the role of fear in shaping prey communities. The linkage between individual home range behavior and patterns at the community level allows for a mechanistic understanding of the underlying processes. My results underline the importance of the structure of the landscape of fear as a key driver of prey community responses, especially if the habitat is threatened by landscape changes. Furthermore, I show that individual landscapes of fear can improve our understanding of the consequences of trait variation on community structures. Regarding conservation and nature management, my results support calls for modern conservation approaches that go beyond single species and address the protection of biotic interactions.}, language = {en} }