@phdthesis{RomeroMujalli2019, author = {Romero Mujalli, Daniel}, title = {Ecological modeling of adaptive evolutionary responses to rapid climate change}, doi = {10.25932/publishup-43062}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430627}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2019}, abstract = {A contemporary challenge in Ecology and Evolutionary Biology is to anticipate the fate of populations of organisms in the context of a changing world. Climate change and landscape changes due to anthropic activities have been of major concern in the contemporary history. Organisms facing these threats are expected to respond by local adaptation (i.e., genetic changes or phenotypic plasticity) or by shifting their distributional range (migration). However, there are limits to their responses. For example, isolated populations will have more difficulties in developing adaptive innovations by means of genetic changes than interconnected metapopulations. Similarly, the topography of the environment can limit dispersal opportunities for crawling organisms as compared to those that rely on wind. Thus, populations of species with different life history strategy may differ in their ability to cope with changing environmental conditions. However, depending on the taxon, empirical studies investigating organisms' responses to environmental change may become too complex, long and expensive; plus, complications arising from dealing with endangered species. In consequence, eco-evolutionary modeling offers an opportunity to overcome these limitations and complement empirical studies, understand the action and limitations of underlying mechanisms, and project into possible future scenarios. In this work I take a modeling approach and investigate the effect and relative importance of evolutionary mechanisms (including phenotypic plasticity) on the ability for local adaptation of populations with different life strategy experiencing climate change scenarios. For this, I performed a review on the state of the art of eco-evolutionary Individual-Based Models (IBMs) and identify gaps for future research. Then, I used the results from the review to develop an eco-evolutionary individual-based modeling tool to study the role of genetic and plastic mechanisms in promoting local adaption of populations of organisms with different life strategies experiencing scenarios of climate change and environmental stochasticity. The environment was simulated through a climate variable (e.g., temperature) defining a phenotypic optimum moving at a given rate of change. The rate of change was changed to simulate different scenarios of climate change (no change, slow, medium, rapid climate change). Several scenarios of stochastic noise color resembling different climatic conditions were explored. Results show that populations of sexual species will rely mainly on standing genetic variation and phenotypic plasticity for local adaptation. Population of species with relatively slow growth rate (e.g., large mammals) - especially those of small size - are the most vulnerable, particularly if their plasticity is limited (i.e., specialist species). In addition, whenever organisms from these populations are capable of adaptive plasticity, they can buffer fitness losses in reddish climatic conditions. Likewise, whenever they can adjust their plastic response (e.g., bed-hedging strategy) they will cope with bluish environmental conditions as well. In contrast, life strategies of high fecundity can rely on non-adaptive plasticity for their local adaptation to novel environmental conditions, unless the rate of change is too rapid. A recommended management measure is to guarantee interconnection of isolated populations into metapopulations, such that the supply of useful genetic variation can be increased, and, at the same time, provide them with movement opportunities to follow their preferred niche, when local adaptation becomes problematic. This is particularly important for bluish and reddish climatic conditions, when the rate of change is slow, or for any climatic condition when the level of stress (rate of change) is relatively high.}, language = {en} } @article{LatimerJacobsGianolietal.2019, author = {Latimer, Andrew M. and Jacobs, Brooke S. and Gianoli, Ernesto and Heger, Tina and Salgado-Luarte, Cristian}, title = {Parallel functional differentiation of an invasive annual plant on two continents}, series = {AoB PLANTS}, volume = {11}, journal = {AoB PLANTS}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {2041-2851}, doi = {10.1093/aobpla/plz010}, pages = {16}, year = {2019}, abstract = {Rapid local adaptation frequently occurs during the spread of invading species. It remains unclear, however, how consistent, and therefore potentially predictable, such patterns of local adaptation are. One approach to this question is to measure patterns of local differentiation in functional traits and plasticity levels in invasive species in multiple regions. Finding consistent patterns of local differentiation in replicate regions suggests that these patterns are adaptive. Further, this outcome indicates that the invading species likely responds predictably to selection along environmental gradients, even though standing genetic variation is likely to have been reduced during introduction. We studied local differentiation in the invasive annual plant Erodium cicutarium in two invaded regions, California and Chile. We collected seeds from across strong gradients in precipitation and temperature in Mediterranean-climate parts of the two regions (10 populations per region). We grew seeds from maternal families from these populations through two generations and exposed the second generation to contrasting levels of water and nutrient availability. We measured growth, flowering time and leaf functional traits across these treatments to obtain trait means and plasticity measures. We found strong differentiation among populations in all traits. Plants from drier environments flowered earlier, were less plastic in flowering time and reached greater size in all treatments. Correlations among traits within regions suggested a coordinated evolutionary response along environmental gradients associated with growing season length. There was little divergence in traits and trait intercorrelations between regions, but strongly parallel divergence in traits within regions. Similar, statistically consistent patterns of local trait differentiation across two regions suggest that local adaptation to environmental gradients has aided the spread of this invasive species, and that the formation of ecotypes in newly invaded environments has been relatively consistent and predictable.}, language = {en} } @article{KahlLenhardJoshi2019, author = {Kahl, Sandra M. and Lenhard, Michael and Joshi, Jasmin Radha}, title = {Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris}, series = {The journal of ecology}, volume = {107}, journal = {The journal of ecology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.13133}, pages = {1918 -- 1930}, year = {2019}, abstract = {The adaptation of plants to future climatic conditions is crucial for their survival. Not surprisingly, phenotypic responses to climate change have already been observed in many plant populations. These responses may be due to evolutionary adaptive changes or phenotypic plasticity. Especially plant species with a wide geographic range are either expected to show genetic differentiation in response to differing climate conditions or to have a high phenotypic plasticity. We investigated phenotypic responses and plasticity as an estimate of the adaptive potential in the widespread species Silene vulgaris. In a greenhouse experiment, 25 European populations covering a geographic range from the Canary Islands to Sweden were exposed to three experimental precipitation and two temperature regimes mimicking a possible climate-change scenario for central Europe. We hypothesized that southern populations have a better performance under high temperature and drought conditions, as they are already adapted to a comparable environment. We found that our treatments significantly influenced the plants, but did not reveal a latitudinal difference in response to climate treatments for most plant traits. Only flower number showed a stronger plasticity in northern European populations (e.g. Swedish populations) where numbers decreased more drastically with increased temperature and decreased precipitation treatment. Synthesis. The significant treatment response in Silene vulgaris, independent of population origin - except for the number of flowers produced - suggests a high degree of universal phenotypic plasticity in this widely distributed species. This reflects the likely adaptation strategy of the species and forms the basis for a successful survival strategy during upcoming climatic changes. However, as flower number, a strongly fitness-related trait, decreased more strongly in northern populations under a climate-change scenario, there might be limits to adaptation even in this widespread, plastic species.}, language = {en} } @article{HerdenEckertStiftetal.2019, author = {Herden, Jasmin and Eckert, Silvia and Stift, Marc and Joshi, Jasmin Radha and van Kleunen, Mark}, title = {No evidence for local adaptation and an epigenetic underpinning in native and non-native ruderal plant species in Germany}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {17}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5325}, pages = {9412 -- 9426}, year = {2019}, abstract = {Many invasive species have rapidly adapted to different environments in their new ranges. This is surprising, as colonization is usually associated with reduced genetic variation. Heritable phenotypic variation with an epigenetic basis may explain this paradox. Here, we assessed the contribution of DNA methylation to local adaptation in native and naturalized non-native ruderal plant species in Germany. We reciprocally transplanted offspring from natural populations of seven native and five non-native plant species between the Konstanz region in the south and the Potsdam region in the north of Germany. Before the transplant, half of the seeds were treated with the demethylation agent zebularine. We recorded survival, flowering probability, and biomass production as fitness estimates. Contrary to our expectations, we found little evidence for local adaptation, both among the native and among the non-native plant species. Zebularine treatment had mostly negative effects on overall plant performance, regardless of whether plants were local or not, and regardless of whether they were native or non-native. Synthesis. We conclude that local adaptation, at least at the scale of our study, plays no major role in the success of non-native and native ruderal plants. Consequently, we found no evidence yet for an epigenetic basis of local adaptation.}, language = {en} }