@misc{GuentnerReichMikolajetal.2017, author = {G{\"u}ntner, Andreas and Reich, Marvin and Mikolaj, Michal and Creutzfeldt, Benjamin and Schroeder, Stephan and Wziontek, Hartmut}, title = {Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {663}, issn = {1866-8372}, doi = {10.25932/publishup-41910}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419105}, pages = {16}, year = {2017}, abstract = {In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85\% of the gravity signal due to local water storage changes originating within a radius of 4000 and 200m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.}, language = {en} } @misc{AngermannJackischAllroggenetal.2017, author = {Angermann, Lisa and Jackisch, Conrad and Allroggen, Niklas and Sprenger, Matthias and Zehe, Erwin and Tronicke, Jens and Weiler, Markus and Blume, Theresa}, title = {Form and function in hillslope hydrology}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {658}, issn = {1866-8372}, doi = {10.25932/publishup-41916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419161}, pages = {22}, year = {2017}, abstract = {The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al. (2017).}, language = {en} } @misc{AgarwalMarwanMaheswaranetal.2017, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno and Kurths, J{\"u}rgen}, title = {Multi-scale event synchronization analysis for unravelling climate processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {661}, issn = {1866-8372}, doi = {10.25932/publishup-41827}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418274}, pages = {13}, year = {2017}, abstract = {The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.}, language = {en} } @misc{SchaeferBittmann2018, author = {Schaefer, Laura and Bittmann, Frank}, title = {Coherent behavior of neuromuscular oscillations between isometrically interacting subjects}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {480}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419864}, pages = {10}, year = {2018}, abstract = {Previous research has shown that electrical muscle activity is able to synchronize between muscles of one subject. The ability to synchronize the mechanical muscle oscillations measured by Mechanomyography (MMG) is not described sufficiently. Likewise, the behavior of myofascial oscillations was not considered yet during muscular interaction of two human subjects. The purpose of this study is to investigate the myofascial oscillations intra- and interpersonally. For this the mechanical muscle oscillations of the triceps and the abdominal external oblique muscles were measured by MMG and the triceps tendon was measured by mechanotendography (MTG) during isometric interaction of two subjects (n = 20) performed at 80\% of the MVC using their arm extensors. The coherence of MMG/MTG-signals was analyzed with coherence wavelet transform and was compared with randomly matched signal pairs. Each signal pairing shows significant coherent behavior. Averagely, the coherent phases of n = 485 real pairings last over 82 ± 39 \% of the total duration time of the isometric interaction. Coherent phases of randomly matched signal pairs take 21 ± 12 \% of the total duration time (n = 39). The difference between real vs. randomly matched pairs is significant (U = 113.0, p = 0.000, r = 0.73). The results show that the neuromuscular system seems to be able to synchronize to another neuromuscular system during muscular interaction and generate a coherent behavior of the mechanical muscular oscillations. Potential explanatory approaches are discussed.}, language = {en} } @article{SchaeferBittmann2018, author = {Schaefer, Laura and Bittmann, Frank}, title = {Coherent behavior of neuromuscular oscillations between isometrically interacting subjects}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-33579-5}, pages = {1 -- 10}, year = {2018}, abstract = {Previous research has shown that electrical muscle activity is able to synchronize between muscles of one subject. The ability to synchronize the mechanical muscle oscillations measured by Mechanomyography (MMG) is not described sufficiently. Likewise, the behavior of myofascial oscillations was not considered yet during muscular interaction of two human subjects. The purpose of this study is to investigate the myofascial oscillations intra- and interpersonally. For this the mechanical muscle oscillations of the triceps and the abdominal external oblique muscles were measured by MMG and the triceps tendon was measured by mechanotendography (MTG) during isometric interaction of two subjects (n = 20) performed at 80\% of the MVC using their arm extensors. The coherence of MMG/MTG-signals was analyzed with coherence wavelet transform and was compared with randomly matched signal pairs. Each signal pairing shows significant coherent behavior. Averagely, the coherent phases of n = 485 real pairings last over 82 ± 39 \% of the total duration time of the isometric interaction. Coherent phases of randomly matched signal pairs take 21 ± 12 \% of the total duration time (n = 39). The difference between real vs. randomly matched pairs is significant (U = 113.0, p = 0.000, r = 0.73). The results show that the neuromuscular system seems to be able to synchronize to another neuromuscular system during muscular interaction and generate a coherent behavior of the mechanical muscular oscillations. Potential explanatory approaches are discussed.}, language = {en} } @article{PaetzigKalettkaOnandiaetal.2020, author = {P{\"a}tzig, Marlene and Kalettka, Thomas and Onandia, Gabriela and Balla, Dagmar and Lischeid, Gunnar}, title = {How much information do we gain from multiple-year sampling in natural pond research?}, series = {Limnologica : ecology and management of inland waters}, volume = {80}, journal = {Limnologica : ecology and management of inland waters}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0075-9511}, doi = {10.1016/j.limno.2019.125728}, pages = {10}, year = {2020}, abstract = {Natural ponds are perceived as spatially and temporally highly variable ecosystems. This perception is in contrast to the often-applied sampling design with high spatial but low temporal replication. Based on a data set covering a period of six years and 20 permanently to periodically inundated ponds, we investigated whether this widely applied sampling design is sufficient to identify differences between single ponds or single years with regard to water quality and macrophyte community composition as measures of ecosystem integrity. In our study, the factor "pond", which describes differences between individual ponds, explained 56 \% and 63 \%, respectively, of the variance in water quality and macrophyte composition. In contrast, the factor "year" that refers to changes between individual years, contributed less to understand the observed variability in water quality and macrophyte composition (10 \% and 7 \% respectively, of the variance explained). The low explanation of variance for "year" and the low year-to-year correlation for the single water quality parameter or macrophyte coverage values, respectively, indicated high but non-consistent temporal variability affecting individual pond patterns. In general, the results largely supported the ability of the widely applied sampling strategy with about one sampling date per year to capture differences in water quality and macrophyte community composition between ponds. Hence, future research can be rest upon sampling designs that give more weight to the number of ponds than the number of years in dependence on the research question and the available resources. Nonetheless, pond research would miss a substantial amount of information (7 to 10 \% of the variance explained), when the sampling would generally be restricted to one year. Moreover, we expect that the importance of multiple-year sampling will likely increase in periods and regions of higher hydrological variability compared to the average hydrological conditions encountered in the studied period.}, language = {en} } @article{MauerbergerSchannerKorteetal.2020, author = {Mauerberger, Stefan and Schanner, Maximilian Arthus and Korte, Monika and Holschneider, Matthias}, title = {Correlation based snapshot models of the archeomagnetic field}, series = {Geophysical journal international}, volume = {223}, journal = {Geophysical journal international}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggaa336}, pages = {648 -- 665}, year = {2020}, abstract = {For the time stationary global geomagnetic field, a new modelling concept is presented. A Bayesian non-parametric approach provides realistic location dependent uncertainty estimates. Modelling related variabilities are dealt with systematically by making little subjective apriori assumptions. Rather than parametrizing the model by Gauss coefficients, a functional analytic approach is applied. The geomagnetic potential is assumed a Gaussian process to describe a distribution over functions. Apriori correlations are given by an explicit kernel function with non-informative dipole contribution. A refined modelling strategy is proposed that accommodates non-linearities of archeomagnetic observables: First, a rough field estimate is obtained considering only sites that provide full field vector records. Subsequently, this estimate supports the linearization that incorporates the remaining incomplete records. The comparison of results for the archeomagnetic field over the past 1000 yr is in general agreement with previous models while improved model uncertainty estimates are provided.}, language = {en} } @misc{AlirezaeizanjaniGrossmannPfeiferetal.2020, author = {Alirezaeizanjani, Zahra and Großmann, Robert and Pfeifer, Veronika and Hintsche, Marius and Beta, Carsten}, title = {Chemotaxis strategies of bacteria with multiple run modes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {22}, issn = {1866-8372}, doi = {10.25932/publishup-51909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519098}, pages = {10}, year = {2020}, abstract = {Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats.}, language = {en} } @article{AlirezaeizanjaniGrossmannPfeiferetal.2020, author = {Alirezaeizanjani, Zahra and Großmann, Robert and Pfeifer, Veronika and Hintsche, Marius and Beta, Carsten}, title = {Chemotaxis strategies of bacteria with multiple run modes}, series = {Science advances}, volume = {6}, journal = {Science advances}, number = {22}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aaz6153}, pages = {8}, year = {2020}, abstract = {Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats.}, language = {en} } @article{ThielePrieskeChaabeneetal.2020, author = {Thiele, Dirk and Prieske, Olaf and Chaabene, Helmi and Granacher, Urs}, title = {Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers}, series = {Journal of sports sciences}, volume = {38}, journal = {Journal of sports sciences}, number = {10}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0264-0414}, doi = {10.1080/02640414.2020.1745502}, pages = {1186 -- 1195}, year = {2020}, abstract = {The purpose of this systematic review with meta-analysis was to examine the effects of strength training (ST) on selected components of physical fitness (e.g., lower/upper limb maximal strength, muscular endurance, jump performance, cardiorespiratory endurance) and sport-specific performance in rowers. Only studies with an active control group were included if they examined the effects of ST on at least one proxy of physical fitness and/or sport-specific performance in rowers. Weighted and averaged standardized mean differences (SMD) were calculated using random-effects models. Subgroup analyses were computed to identify effects of ST type or expertise level on sport-specific performance. Our analyses revealed significant small effects of ST on lower limb maximal strength (SMD = 0.42, p = 0.05) and on sport-specific performance (SMD = 0.32, p = 0.05). Non-significant effects were found for upper limb maximal strength, upper/lower limb muscular endurance, jump performance, and cardiorespiratory endurance. Subgroup analyses for ST type and expertise level showed non-significant differences between the respective subgroups of rowers (p >= 0.32). Our systematic review with meta-analysis indicated that ST is an effective means for improving lower limb maximal strength and sport-specific performance in rowers. However, ST-induced effects are neither modulated by ST type nor rowers' expertise level.}, language = {en} }