@phdthesis{Kuenstler2015, author = {K{\"u}nstler, Andreas}, title = {Spot evolution on the red giant star XX Triangulum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84008}, school = {Universit{\"a}t Potsdam}, year = {2015}, abstract = {Spots on stellar surfaces are thought to be stellar analogues of sunspots. Thus, starspots are direct manifestations of strong magnetic fields. Their decay rate is directly related to the magnetic diffusivity, which itself is a key quantity for the deduction of an activity cycle length. So far, no single starspot decay has been observed, and thus no stellar activity cycle was inferred from its corresponding turbulent diffusivity. We investigate the evolution of starspots on the rapidly-rotating K0 giant XX Triangulum. Continuous high-resolution and phase-resolved spectroscopy was obtained with the robotic 1.2-m STELLA telescope on Tenerife over a timespan of six years. With our line-profile inversion code iMap we reconstruct a total of 36 consecutive Doppler maps. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte-Carlo approach. It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various time scales and morphology such as spot fragmentation and spot merging as well as spot decay and formation. For the first time, a starspot decay rate on another star than the Sun is determined. From our spot-decay analysis we determine an average linear decay rate of D = -0.067±0.006 Gm^2/day. From this decay rate, we infer a turbulent diffusivity of η_τ = (6.3±0.5) x 10^14 cm^2/s and consequently predict an activity cycle of 26±6 years. The obtained cycle length matches very well with photometric observations. Our time-series of Doppler maps further enables to investigate the differential rotation of XX Tri. We therefore applied a cross-correlation analysis. We detect a weak solar-like differential rotation with a surface shear of α = 0.016±0.003. This value agrees with similar studies of other RS CVn stars. Furthermore, we found evidence for active longitudes and flip-flops. Whereas the more active longitude is located in phase towards the (unseen) companion star, the weaker active longitude is located at the opposite stellar hemisphere. From their periodic appearance, we infer a flip-flop cycle of ~2 years. Both activity phenomena are common on late-type binary stars. Last but not least we redetermine several astrophysical properties of XX Tri and its binary system, as large datasets of photometric and spectroscopic observations are available since its last determination in 1999. Additionally, we compare the rotational spot-modulation from photometric and spectroscopic studies.}, language = {en} } @phdthesis{Fournier2016, author = {Fournier, Yori}, title = {Dynamics of the rise of magnetic flux tubes in stellar interiors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394533}, school = {Universit{\"a}t Potsdam}, pages = {xii, 98}, year = {2016}, abstract = {In sonnen{\"a}hnlichen Sternen erh{\"a}lt ein Dynamo-Mechanismus die Magnetfelder. Der Babcock-Leighton-Dynamo beruht auf einem solchen Mechanismus und erfordert insbesondere die Existenz von magnetischen Flussr{\"o}hren. Man nimmt an, dass magnetische Flussr{\"o}hren am Boden der Konvetionszone entstehen und durch Auftrieb bis zur Oberfl{\"a}che steigen. Es wird ein spezielles Dynamomodell vorgeschlagen, in dem der Verz{\"o}gerungseffekt durch das Aufsteigen der Flussr{\"o}hren ber{\"u}cksichtigt wird. Die vorliegende Dissertation besch{\"a}ftigt sich mit der Anwendbarkeit des Babcock-Leighton-Dynamos auf andere Sterne. Zu diesem Zweck versuchen wir, die Aufstiegszeiten von magnetischen Flussr{\"o}hren mit Hilfe von kompressiblen MHD-Simulationen in sp{\"a}rischen Kugelschalen mit Dichteschichtung zu bestimmen und einzugrenzen. Derartige Simulationen sind allerdings nur in einem unrealistischen Parameterbereich m{\"o}glich. Deshalb ist eine Skalierungsrelation n{\"o}tig, die die Ergebnisse auf realistische physikalische Regimes {\"u}bertr{\"a}gt. Wir erweitern fr{\"u}here Arbeiten zu Skalierungsrelationen in 2D und leiten ein allgemeines Skalierungsgesetz ab, das f{\"u}r 2D- und 3D-Flussr{\"o}hren g{\"u}ltig ist. In einem umfangreichen Satz von numerischen Simulationen zeigen wir, dass die abgeleitete Skalierungsrelation auch im vollst{\"a}ndig nichtlinearen Fall gilt. Wir haben damit ein Gesetz f{\"u}r die Aufstiegszeit von magnetischen Flussr{\"o}hren gefunden, dass in jedem sonnen{\"a}hnlichen Stern G{\"u}ltigkeit hat. Schließlich implementieren wir dieses Gesetz in einem Dynamomodell mit Verz{\"o}gerungsterm. Die Simulationen eines solchen verz{\"o}gerten Flussr{\"o}hren/Babcock-Leighton-Dynamos auf der Basis der Meanfield-Formulierung f{\"u}hrten auf ein neues Dynamo-Regime, das nur bei Anwesenheit der Verz{\"o}gerung existiert. Die erforderlichen Verz{\"o}gerungen sind von der Gr{\"o}{\"y}enordnung der Zyklusl{\"a}nge, die resultierenden Magnetfelder sind schw{\"a}cher als die {\"A}quipartitions-Feldst{\"a}rke. Dieses neue Regime zeigt, dass auch bei sehr langen Aufstiegszeiten der Flussr{\"o}hren/Babcock-Leighton-Dynamo noch nichtzerfallende L{\"o}sungen liefern und daher auf ein breites Spektrum von Sternen anwendbar sein kann.}, language = {en} } @phdthesis{Foster2022, author = {Foster, Mary Grace}, title = {X-Ray studies of exoplanet systems}, publisher = {xiii, 92}, doi = {10.25932/publishup-56215}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-562152}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2022}, abstract = {X-rays are integral to furthering our knowledge of exoplanetary systems. In this work we discuss the use of X-ray observations to understand star-planet interac- tions, mass-loss rates of an exoplanet's atmosphere and the study of an exoplanet's atmospheric components using future X-ray spectroscopy. The low-mass star GJ 1151 was reported to display variable low-frequency radio emission, which is an indication of coronal star-planet interactions with an unseen exoplanet. In chapter 5 we report the first X-ray detection of GJ 1151's corona based on XMM-Newton data. Averaged over the observation, we detect the star with a low coronal temperature of 1.6 MK and an X-ray luminosity of LX = 5.5 × 1026 erg/s. This is compatible with the coronal assumptions for a sub-Alfv{\´e}nic star- planet interaction origin of the observed radio signals from this star. In chapter 6, we aim to characterise the high-energy environment of known ex- oplanets and estimate their mass-loss rates. This work is based on the soft X-ray instrument on board the Spectrum Roentgen Gamma (SRG) mission, eROSITA, along with archival data from ROSAT, XMM-Newton, and Chandra. We use these four X-ray source catalogues to derive X-ray luminosities of exoplanet host stars in the 0.2-2 keV energy band. A catalogue of the mass-loss rates of 287 exoplan- ets is presented, with 96 of these planets characterised for the first time using new eROSITA detections. Of these first time detections, 14 are of transiting exoplanets that undergo irradiation from their host stars that is of a level known to cause ob- servable evaporation signals in other systems, making them suitable for follow-up observations. In the next generation of space observatories, X-ray transmission spectroscopy of an exoplanet's atmosphere will be possible, allowing for a detailed look into the atmospheric composition of these planets. In chapter 7, we model sample spectra using a toy model of an exoplanetary atmosphere to predict what exoplanet transit observations with future X-ray missions such as Athena will look like. We then estimate the observable X-ray transmission spectrum for a typical Hot Jupiter-type exoplanet, giving us insights into the advances in X-ray observations of exoplanets in the decades to come.}, language = {en} } @phdthesis{Ketzer2024, author = {Ketzer, Laura}, title = {The impact of stellar activity evolution on atmospheric mass loss of young exoplanets}, doi = {10.25932/publishup-62681}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626819}, school = {Universit{\"a}t Potsdam}, pages = {x, 208}, year = {2024}, abstract = {The increasing number of known exoplanets raises questions about their demographics and the mechanisms that shape planets into how we observe them today. Young planets in close-in orbits are exposed to harsh environments due to the host star being magnetically highly active, which results in high X-ray and extreme UV fluxes impinging on the planet. Prolonged exposure to this intense photoionizing radiation can cause planetary atmospheres to heat up, expand and escape into space via a hydrodynamic escape process known as photoevaporation. For super-Earth and sub-Neptune-type planets, this can even lead to the complete erosion of their primordial gaseous atmospheres. A factor of interest for this particular mass-loss process is the activity evolution of the host star. Stellar rotation, which drives the dynamo and with it the magnetic activity of a star, changes significantly over the stellar lifetime. This strongly affects the amount of high-energy radiation received by a planet as stars age. At a young age, planets still host warm and extended envelopes, making them particularly susceptible to atmospheric evaporation. Especially in the first gigayear, when X-ray and UV levels can be 100 - 10,000 times higher than for the present-day sun, the characteristics of the host star and the detailed evolution of its high-energy emission are of importance. In this thesis, I study the impact of stellar activity evolution on the high-energy-induced atmospheric mass loss of young exoplanets. The PLATYPOS code was developed as part of this thesis to calculate photoevaporative mass-loss rates over time. The code, which couples parameterized planetary mass-radius relations with an analytical hydrodynamic escape model, was used, together with Chandra and eROSITA X-ray observations, to investigate the future mass loss of the two young multiplanet systems V1298 Tau and K2-198. Further, in a numerical ensemble study, the effect of a realistic spread of activity tracks on the small-planet radius gap was investigated for the first time. The works in this thesis show that for individual systems, in particular if planetary masses are unconstrained, the difference between a young host star following a low-activity track vs. a high-activity one can have major implications: the exact shape of the activity evolution can determine whether a planet can hold on to some of its atmosphere, or completely loses its envelope, leaving only the bare rocky core behind. For an ensemble of simulated planets, an observationally-motivated distribution of activity tracks does not substantially change the final radius distribution at ages of several gigayears. My simulations indicate that the overall shape and slope of the resulting small-planet radius gap is not significantly affected by the spread in stellar activity tracks. However, it can account for a certain scattering or fuzziness observed in and around the radius gap of the observed exoplanet population.}, language = {en} }