@misc{MuellerKupschLaquaietal.2018, author = {M{\"u}ller, Bernd Randolf and Kupsch, Andreas and Laquai, Rene and Nellesen, Jens and Tillmann, Wolfgang and Kasperovich, Galina and Bruno, Giovanni}, title = {Microstructure Characterisation of Advanced Materials via 2D and 3D X-Ray Refraction Techniques}, series = {Materials Science Forum}, volume = {941}, journal = {Materials Science Forum}, publisher = {Trans Tech Publications Ltd}, address = {Zurich}, isbn = {978-3-0357-1208-7}, issn = {0255-5476}, doi = {10.4028/www.scientific.net/MSF.941.2401}, pages = {2401 -- 2406}, year = {2018}, abstract = {3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity's like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography.}, language = {en} } @phdthesis{Walczak2019, author = {Walczak, Ralf}, title = {Molecular design of nitrogen-doped nanoporous noble carbon materials for gas adsorption}, doi = {10.25932/publishup-43524}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435241}, school = {Universit{\"a}t Potsdam}, pages = {II, 155}, year = {2019}, abstract = {In den modernen Gesellschaften f{\"u}hrt ein stetig steigender Energiebedarf zu dem zunehmenden Verbrauch fossiler Brennstoffe wie Kohle, {\"O}l, und Gas. Die Verbrennung dieser kohlenstoffbasierten Brennstoffe f{\"u}hrt unweigerlich zur Freisetzung von Treibhausgasen, vor allem von CO2. Die CO2 Aufnahme unmittelbar bei den Verbrennungsanlagen oder direkt aus der Luft, zusammen mit Regulierung von CO2 produzierenden Energiesektoren (z.B. K{\"u}hlanlagen), k{\"o}nnen den CO2 Ausstoß reduzieren. Allerdings f{\"u}hren insbesondere bei der CO2 Aufnahme die geringen CO2 Konzentrationen und die Aufnahme konkurrierender Gase zu niedrigen CO2 Kapazit{\"a}ten und Selektivit{\"a}ten. Das Zusammenspiel der Gastmolek{\"u}le mit por{\"o}sen Materialien ist dabei essentiell. Por{\"o}se Kohlenstoffmaterialien besitzen attraktive Eigenschaften, unter anderem elektrische Leitf{\"a}higkeit, einstellbare Porosit{\"a}t, als auch chemische und thermische Stabilit{\"a}t. Allerdings f{\"u}hrt die zu geringe Polarisierbarkeit dieser Materialien zu einer geringen Affinit{\"a}t zu polaren Molek{\"u}len (z.B. CO2, H2O, oder NH3). Diese Affinit{\"a}t kann durch den Einbau von Stickstoff erh{\"o}ht werden. Solche Materialien sind oft „edler" als reine Kohlenstoffe, dies bedeutet, dass sie eher oxidierend wirken, als selbst oxidiert zu werden. Die Problematik besteht darin, einen hohen und gleichm{\"a}ßig verteilten Stickstoffgehalt in das Kohlenstoffger{\"u}st einzubauen. Die Zielsetzung dieser Dissertation ist die Erforschung neuer Synthesewege f{\"u}r stickstoffdotierte edle Kohlenstoffmaterialien und die Entwicklung eines grundlegenden Verst{\"a}ndnisses f{\"u}r deren Anwendung in Gasadsorption und elektrochemischer Energiespeicherung. Es wurde eine templatfreie Synthese f{\"u}r stickstoffreiche, edle, und mikropor{\"o}se Kohlenstoffmaterialien durch direkte Kondensation eines stickstoffreichen organischen Molek{\"u}ls als Vorl{\"a}ufer erarbeitet. Dadurch konnten Materialien mit hohen Adsorptionskapazit{\"a}ten f{\"u}r H2O und CO2 bei niedrigen Konzentrationen und moderate CO2/N2 Selektivit{\"a}ten erzielt werden. Um die CO2/N2 Selektivit{\"a}ten zu verbessern, wurden mittels der Einstellung des Kondensationsgrades die molekulare Struktur und Porosit{\"a}t der Kohlenstoffmaterialien kontrolliert. Diese Materialien besitzen die Eigenschaften eines molekularen Siebs f{\"u}r CO2 {\"u}ber N2, das zu herausragenden CO2/N2 Selektivit{\"a}ten f{\"u}hrt. Der ultrahydrophile Charakter der Porenoberfl{\"a}chen und die kleinen Mikroporen dieser Kohlenstoffmaterialien erm{\"o}glichen grundlegende Untersuchungen f{\"u}r die Wechselwirkungen mit Molek{\"u}len die polarer sind als CO2, n{\"a}mlich H2O und NH3. Eine weitere Reihe stickstoffdotierter Kohlenstoffmaterialien wurde durch Kondensation eines konjugierten mikropor{\"o}sen Polymers synthetisiert und deren strukturelle Besonderheiten als Anodenmaterial f{\"u}r die Natriumionen Batterie untersucht. Diese Dissertation leistet einen Beitrag zur Erforschung stickstoffdotierter Kohlenstoffmaterialien und deren Wechselwirkungen mit verschiedenen Gastmolek{\"u}len.}, language = {en} } @article{BehlZhaoLendlein2020, author = {Behl, Marc and Zhao, Qian and Lendlein, Andreas}, title = {Glucose-responsive shape-memory cryogels}, series = {Journal of materials research : JMR}, volume = {35}, journal = {Journal of materials research : JMR}, number = {18}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/jmr.2020.204}, pages = {2396 -- 2404}, year = {2020}, abstract = {Boronic ester bonds can be reversibly formed between phenylboronic acid (PBA) and triol moieties. Here, we aim at a glucose-induced shape-memory effect by implementing such bonds as temporary netpoints, which are cleavable by glucose and by minimizing the volume change upon stimulation by a porous cryogel structure. The polymer system consisted of a semi-interpenetrating network (semi-IPN) architecture, in which the triol moieties were part of the permanent network and the PBA moieties were located in the linear polymer diffused into the semi-IPN. In an alkaline medium (pH = 10), the swelling ratio was approximately 35, independent of C-glu varied between 0 and 300 mg/dL. In bending experiments, shape fixity R-f approximate to 80\% and shape recovery R-r approximate to 100\% from five programming/recovery cycles could be determined. R-r was a function of C-glu in the range from 0 to 300 mg/dL, which accords with the fluctuation range of C-glu in human blood. In this way, the shape-memory hydrogels could play a role in future diabetes treatment options.}, language = {en} } @article{LeonardZhangKrebsetal.2020, author = {L{\´e}onard, Fabien and Zhang, Zhen and Krebs, Holger and Bruno, Giovanni}, title = {Structural and morphological quantitative 3D characterisation of ammonium nitrate prills by X-ray computed tomography}, series = {Materials}, volume = {13}, journal = {Materials}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13051230}, pages = {16}, year = {2020}, abstract = {The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.}, language = {en} } @article{ZhangGuoChen2020, author = {Zhang, Yan-qiu and Guo, Zeng-hui and Chen, Dai-zhao}, title = {Porosity distribution in cyclic dolomites of the Lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, China}, series = {China geology}, volume = {3}, journal = {China geology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2096-5192}, pages = {425 -- 444}, year = {2020}, abstract = {Increasing interests in hydrocarbon resources at depths have drawn greater attentions to the deeply-buried carbonate reservoirs in the Tarim Basin in China. In this study, the cyclic dolomite rocks of Upper Cambrian Lower Qiulitag Group from four outcrop sections in northwestern Tarim Basin were selected to investigate and evaluate the petrophysical properties in relation to depositional facies and cyclicity. The Lower Qiulitag Group includes ten lithofacies, which were deposited in intermediate to shallow subtidal, restricted shallow subtidal, intertidal, and supratidal environments on a carbonate ramp system. These lithofacies are vertically stacked into repeated shallowing-upward, meter-scale cycles which are further grouped into six third-order depositional sequences (Sq1 to Sq6). There are variable types of pore spaces in the Lower Qiulitag Group dolomite rocks, including interparticle, intraparticle, and fenestral pores of primary origin, inter crystal, and vuggy pores of late diagenetic modification. The porosity in the dolomites is generally facies-selective as that the microbially-originated thrombolites and stromatolites generally yield a relatively high porosity. In contrast, the high-energy ooidal grainstones generally have very low porosity. In this case, the microbialite-based peritidal cycles and peritidal cycle-dominated highstand (or regressive) successions have relatively high volumes of pore spaces, although highly fluctuating (or vertical inhomogeneous). Accordingly, the grainstone-based subtidal cycles and subtidal cycle-dominated transgressive successions generally yield extremely low porosity. This scenario indicates that porosity development and preservation in the thick dolomite successions are primarily controlled by depositional facies which were influenced by sea-level fluctuations of different orders and later diagenetic overprinting.}, language = {en} } @article{KojdaHofmannGostkowskaLekneretal.2022, author = {Kojda, Danny and Hofmann, Tommy and Gostkowska-Lekner, Natalia Katarzyna and Habicht, Klaus}, title = {Characterization and modeling of the temperature-dependent thermal conductivity in sintered porous silicon-aluminum nanomaterials}, series = {Nano research}, volume = {15}, journal = {Nano research}, number = {6}, publisher = {Tsinghua Univ. Press}, address = {Beijing}, issn = {1998-0124}, doi = {10.1007/s12274-022-4123-y}, pages = {5663 -- 5670}, year = {2022}, abstract = {Nanostructured silicon and silicon-aluminum compounds are synthesized by a novel synthesis strategy based on spark plasma sintering (SPS) of silicon nanopowder, mesoporous silicon (pSi), and aluminum nanopowder. The interplay of metal-assisted crystallization and inherent porosity is exploited to largely suppress thermal conductivity. Morphology and temperature-dependent thermal conductivity studies allow us to elucidate the impact of porosity and nanostructure on the macroscopic heat transport. Analytic electron microscopy along with quantitative image analysis is applied to characterize the sample morphology in terms of domain size and interpore distance distributions. We demonstrate that nanostructured domains and high porosity can be maintained in densified mesoporous silicon samples. In contrast, strong grain growth is observed for sintered nanopowders under similar sintering conditions. We observe that aluminum agglomerations induce local grain growth, while aluminum diffusion is observed in porous silicon and dispersed nanoparticles. A detailed analysis of the measured thermal conductivity between 300 and 773 K allows us to distinguish the effect of reduced thermal conductivity caused by porosity from the reduction induced by phonon scattering at nanosized domains. With a modified Landauer/Lundstrom approach the relative thermal conductivity and the scattering length are extracted. The relative thermal conductivity confirms the applicability of Kirkpatrick's effective medium theory. The extracted scattering lengths are in excellent agreement with the harmonic mean of log-normal distributed domain sizes and the interpore distances combined by Matthiessen's rule.}, language = {en} }