@article{SchmidtHauke2014, author = {Schmidt, Bernd and Hauke, Sylvia}, title = {Olefin cross metathesis based de novo synthesis of a partially protected L-amicetose and a fully protected L-cinerulose derivative}, series = {Beilstein journal of organic chemistry}, volume = {10}, journal = {Beilstein journal of organic chemistry}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {1860-5397}, doi = {10.3762/bjoc.10.102}, pages = {1023 -- 1031}, year = {2014}, abstract = {Cross metathesis of a lactate derived allylic alcohol and acrolein is the entry point to a de novo synthesis of 4-benzoate protected L-amicetose and a cinerulose derivative protected at C5 and C1.}, language = {en} } @misc{ZwaagHorstBlaženovićetal.2020, author = {Zwaag, Jelle and Horst, Rob ter and Blaženović, Ivana and St{\"o}ßel, Daniel and Ratter, Jacqueline and Worseck, Josephine M. and Schauer, Nicolas and Stienstra, Rinke and Netea, Mihai G. and Jahn, Dieter and Pickkers, Peter and Kox, Matthijs}, title = {Involvement of lactate and pyruvate in the anti-inflammatory effects exerted by voluntary activation of the sympathetic nervous system}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-51778}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517784}, pages = {20}, year = {2020}, abstract = {We recently demonstrated that the sympathetic nervous system can be voluntarily activated following a training program consisting of cold exposure, breathing exercises, and meditation. This resulted in profound attenuation of the systemic inflammatory response elicited by lipopolysaccharide (LPS) administration. Herein, we assessed whether this training program affects the plasma metabolome and if these changes are linked to the immunomodulatory effects observed. A total of 224 metabolites were identified in plasma obtained from 24 healthy male volunteers at six timepoints, of which 98 were significantly altered following LPS administration. Effects of the training program were most prominent shortly after initiation of the acquired breathing exercises but prior to LPS administration, and point towards increased activation of the Cori cycle. Elevated concentrations of lactate and pyruvate in trained individuals correlated with enhanced levels of anti-inflammatory interleukin (IL)-10. In vitro validation experiments revealed that co-incubation with lactate and pyruvate enhances IL-10 production and attenuates the release of pro-inflammatory IL-1 beta and IL-6 by LPS-stimulated leukocytes. Our results demonstrate that practicing the breathing exercises acquired during the training program results in increased activity of the Cori cycle. Furthermore, this work uncovers an important role of lactate and pyruvate in the anti-inflammatory phenotype observed in trained subjects.}, language = {en} } @article{ZwaagHorstBlaženovićetal.2020, author = {Zwaag, Jelle and Horst, Rob ter and Blaženović, Ivana and St{\"o}ßel, Daniel and Ratter, Jacqueline and Worseck, Josephine M. and Schauer, Nicolas and Stienstra, Rinke and Netea, Mihai G. and Jahn, Dieter and Pickkers, Peter and Kox, Matthijs}, title = {Involvement of lactate and pyruvate in the anti-inflammatory effects exerted by voluntary activation of the sympathetic nervous system}, series = {Metabolites}, volume = {10}, journal = {Metabolites}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2218-1989}, doi = {10.3390/metabo10040148}, pages = {1 -- 18}, year = {2020}, abstract = {We recently demonstrated that the sympathetic nervous system can be voluntarily activated following a training program consisting of cold exposure, breathing exercises, and meditation. This resulted in profound attenuation of the systemic inflammatory response elicited by lipopolysaccharide (LPS) administration. Herein, we assessed whether this training program affects the plasma metabolome and if these changes are linked to the immunomodulatory effects observed. A total of 224 metabolites were identified in plasma obtained from 24 healthy male volunteers at six timepoints, of which 98 were significantly altered following LPS administration. Effects of the training program were most prominent shortly after initiation of the acquired breathing exercises but prior to LPS administration, and point towards increased activation of the Cori cycle. Elevated concentrations of lactate and pyruvate in trained individuals correlated with enhanced levels of anti-inflammatory interleukin (IL)-10. In vitro validation experiments revealed that co-incubation with lactate and pyruvate enhances IL-10 production and attenuates the release of pro-inflammatory IL-1 beta and IL-6 by LPS-stimulated leukocytes. Our results demonstrate that practicing the breathing exercises acquired during the training program results in increased activity of the Cori cycle. Furthermore, this work uncovers an important role of lactate and pyruvate in the anti-inflammatory phenotype observed in trained subjects.}, language = {en} } @article{HeroldBehrendtMeissneretal.2022, author = {Herold, Fabian and Behrendt, Tom and Meißner, Caroline and M{\"u}ller, Notger Germar and Schega, Lutz}, title = {The Influence of acute sprint interval training on cognitive performance of healthy younger adults}, series = {International journal of environmental research and public health : IJERPH / Molecular Diversity Preservation International}, volume = {19}, journal = {International journal of environmental research and public health : IJERPH / Molecular Diversity Preservation International}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph19010613}, pages = {14}, year = {2022}, abstract = {There is considerable evidence showing that an acute bout of physical exercises can improve cognitive performance, but the optimal exercise characteristics (e.g., exercise type and exercise intensity) remain elusive. In this regard, there is a gap in the literature to which extent sprint interval training (SIT) can enhance cognitive performance. Thus, this study aimed to investigate the effect of a time-efficient SIT, termed as "shortened-sprint reduced-exertion high-intensity interval training" (SSREHIT), on cognitive performance. Nineteen healthy adults aged 20-28 years were enrolled and assessed for attentional performance (via the d2 test), working memory performance (via Digit Span Forward/Backward), and peripheral blood lactate concentration immediately before and 10 min after an SSREHIT and a cognitive engagement control condition (i.e., reading). We observed that SSREHIT can enhance specific aspects of attentional performance, as it improved the percent error rate (F\%) in the d-2 test (t (18) = -2.249, p = 0.037, d = -0.516), which constitutes a qualitative measure of precision and thoroughness. However, SSREHIT did not change other measures of attentional or working memory performance. In addition, we observed that the exercise-induced increase in the peripheral blood lactate levels correlated with changes in attentional performance, i.e., the total number of responses (GZ) (r(m) = 0.70, p < 0.001), objective measures of concentration (SKL) (r(m) = 0.73, p < 0.001), and F\% (r(m) = -0.54, p = 0.015). The present study provides initial evidence that a single bout of SSREHIT can improve specific aspects of attentional performance and conforming evidence for a positive link between cognitive improvements and changes in peripheral blood lactate levels.}, language = {en} }