@phdthesis{Wotschack2009, author = {Wotschack, Christiane}, title = {Eye movements in reading strategies : how reading strategies modulate effects of distributed processing and oculomotor control}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-021-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-36846}, school = {Universit{\"a}t Potsdam}, pages = {213}, year = {2009}, abstract = {Throughout its empirical research history eye movement research has always been aware of the differences in reading behavior induced by individual differences and task demands. This work introduces a novel comprehensive concept of reading strategy, comprising individual differences in reading style and reading skill as well as reader goals. In a series of sentence reading experiments recording eye movements, the influence of reading strategies on reader- and word-level effects assuming distributed processing has been investigated. Results provide evidence for strategic, top-down influences on eye movement control that extend our understanding of eye guidance in reading.}, language = {en} } @phdthesis{Yadav2023, author = {Yadav, Himanshu}, title = {A computational evaluation of feature distortion and cue weighting in sentence comprehension}, doi = {10.25932/publishup-58505}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585055}, school = {Universit{\"a}t Potsdam}, pages = {iv, 115}, year = {2023}, abstract = {Successful sentence comprehension requires the comprehender to correctly figure out who did what to whom. For example, in the sentence John kicked the ball, the comprehender has to figure out who did the action of kicking and what was being kicked. This process of identifying and connecting the syntactically-related words in a sentence is called dependency completion. What are the cognitive constraints that determine dependency completion? A widely-accepted theory is cue-based retrieval. The theory maintains that dependency completion is driven by a content-addressable search for the co-dependents in memory. The cue-based retrieval explains a wide range of empirical data from several constructions including subject-verb agreement, subject-verb non-agreement, plausibility mismatch configurations, and negative polarity items. However, there are two major empirical challenges to the theory: (i) Grammatical sentences' data from subject-verb number agreement dependencies, where the theory predicts a slowdown at the verb in sentences like the key to the cabinet was rusty compared to the key to the cabinets was rusty, but the data are inconsistent with this prediction; and, (ii) Data from antecedent-reflexive dependencies, where a facilitation in reading times is predicted at the reflexive in the bodybuilder who worked with the trainers injured themselves vs. the bodybuilder who worked with the trainer injured themselves, but the data do not show a facilitatory effect. The work presented in this dissertation is dedicated to building a more general theory of dependency completion that can account for the above two datasets without losing the original empirical coverage of the cue-based retrieval assumption. In two journal articles, I present computational modeling work that addresses the above two empirical challenges. To explain the grammatical sentences' data from subject-verb number agreement dependencies, I propose a new model that assumes that the cue-based retrieval operates on a probabilistically distorted representation of nouns in memory (Article I). This hybrid distortion-plus-retrieval model was compared against the existing candidate models using data from 17 studies on subject-verb number agreement in 4 languages. I find that the hybrid model outperforms the existing models of number agreement processing suggesting that the cue-based retrieval theory must incorporate a feature distortion assumption. To account for the absence of facilitatory effect in antecedent-reflexive dependen� cies, I propose an individual difference model, which was built within the cue-based retrieval framework (Article II). The model assumes that individuals may differ in how strongly they weigh a syntactic cue over a number cue. The model was fitted to data from two studies on antecedent-reflexive dependencies, and the participant-level cue-weighting was estimated. We find that one-fourth of the participants, in both studies, weigh the syntactic cue higher than the number cue in processing reflexive dependencies and the remaining participants weigh the two cues equally. The result indicates that the absence of predicted facilitatory effect at the level of grouped data is driven by some, not all, participants who weigh syntactic cues higher than the number cue. More generally, the result demonstrates that the assumption of differential cue weighting is important for a theory of dependency completion processes. This differential cue weighting idea was independently supported by a modeling study on subject-verb non-agreement dependencies (Article III). Overall, the cue-based retrieval, which is a general theory of dependency completion, needs to incorporate two new assumptions: (i) the nouns stored in memory can undergo probabilistic feature distortion, and (ii) the linguistic cues used for retrieval can be weighted differentially. This is the cumulative result of the modeling work presented in this dissertation. The dissertation makes an important theoretical contribution: Sentence comprehension in humans is driven by a mechanism that assumes cue-based retrieval, probabilistic feature distortion, and differential cue weighting. This insight is theoretically important because there is some independent support for these three assumptions in sentence processing and the broader memory literature. The modeling work presented here is also methodologically important because for the first time, it demonstrates (i) how the complex models of sentence processing can be evaluated using data from multiple studies simultaneously, without oversimplifying the models, and (ii) how the inferences drawn from the individual-level behavior can be used in theory development.}, language = {en} } @phdthesis{Hasl2023, author = {Hasl, Andrea}, title = {Time matters: Adopting a lifespan developmental perspective on individual differences in skills, cumulative advantages, and the role of dynamic modeling approaches}, doi = {10.25932/publishup-59511}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-595112}, school = {Universit{\"a}t Potsdam}, pages = {274}, year = {2023}, abstract = {The impact of individual differences in cognitive skills and socioeconomic background on key educational, occupational, and health outcomes, as well as the mechanisms underlying inequalities in these outcomes across the lifespan, are two central questions in lifespan psychology. The contextual embeddedness of such questions in ontogenetic (i.e., individual, age-related) and historical time is a key element of lifespan psychological theoretical frameworks such as the HIstorical changes in DEvelopmental COntexts (HIDECO) framework (Drewelies et al., 2019). Because the dimension of time is also a crucial part of empirical research designs examining developmental change, a third central question in research on lifespan development is how the timing and spacing of observations in longitudinal studies might affect parameter estimates of substantive phenomena. To address these questions in the present doctoral thesis, I applied innovative state-of-the-art methodology including static and dynamic longitudinal modeling approaches, used data from multiple international panel studies, and systematically simulated data based on empirical panel characteristics, in three empirical studies. The first study of this dissertation, Study I, examined the importance of adolescent intelligence (IQ), grade point average (GPA), and parental socioeconomic status (pSES) for adult educational, occupational, and health outcomes over ontogenetic and historical time. To examine the possible impact of historical changes in the 20th century on the relationships between adolescent characteristics and key adult life outcomes, the study capitalized on data from two representative US cohort studies, the National Longitudinal Surveys of Youth 1979 and 1997, whose participants were born in the late 1960s and 1980s, respectively. Adolescent IQ, GPA, and pSES were positively associated with adult educational attainment, wage levels, and mental and physical health. Across historical time, the influence of IQ and pSES for educational, occupational, and health outcomes remained approximately the same, whereas GPA gained in importance over time for individuals born in the 1980s. The second study of this dissertation, Study II, aimed to examine strict cumulative advantage (CA) processes as possible mechanisms underlying individual differences and inequality in wage development across the lifespan. It proposed dynamic structural equation models (DSEM) as a versatile statistical framework for operationalizing and empirically testing strict CA processes in research on wages and wage dynamics (i.e., wage levels and growth rates). Drawing on longitudinal representative data from the US National Longitudinal Survey of Youth 1979, the study modeled wage levels and growth rates across 38 years. Only 0.5 \% of the sample revealed strict CA processes and explosive wage growth (autoregressive coefficients AR > 1), with the majority of individuals following logarithmic wage trajectories across the lifespan. Adolescent intelligence (IQ) and adult highest educational level explained substantial heterogeneity in initial wage levels and long-term wage growth rates over time. The third study of this dissertation, Study III, investigated the role of observation timing variability in the estimation of non-experimental intervention effects in panel data. Although longitudinal studies often aim at equally spaced intervals between their measurement occasions, this goal is hardly ever met. Drawing on continuous time dynamic structural equation models, the study examines the -seemingly counterintuitive - potential benefits of measurement intervals that vary both within and between participants (often called individually varying time intervals, IVTs) in a panel study. It illustrates the method by modeling the effect of the transition from primary to secondary school on students' academic motivation using empirical data from the German National Educational Panel Study (NEPS). Results of a simulation study based on this real-life example reveal that individual variation in time intervals can indeed benefit the estimation precision and recovery of the true intervention effect parameters.}, language = {en} }