@article{WackerMartinCreuzburg2012, author = {Wacker, Alexander and Martin-Creuzburg, Dominik}, title = {Biochemical nutrient requirements of the rotifer Brachionus calyciflorus co-limitation by sterols and amino acids}, series = {Functional ecology : an official journal of the British Ecological Society}, volume = {26}, journal = {Functional ecology : an official journal of the British Ecological Society}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0269-8463}, doi = {10.1111/j.1365-2435.2012.02047.x}, pages = {1135 -- 1143}, year = {2012}, abstract = {It has been proposed that growth and reproduction of animals is frequently limited by multiple nutrients simultaneously. To improve our understanding of the consequences of multiple nutrient limitations (i.e. co-limitation) for the performance of animals, we conducted standardized population growth experiments using an important aquatic consumer, the rotifer Brachionus calyciflorus. We compared nutrient profiles (sterols, fatty acids and amino acids) of rotifers and their diets to reveal consumerdiet imbalances and thus potentially limiting nutrients. In concomitant growth experiments, we directly supplemented potentially limiting substances (sterols, fatty acids, amino acids) to a nutrient-deficient diet, the cyanobacterium Synechococcus elongatus, and recorded population growth rates. The results from the supplementation experiments corroborated the nutrient limitations predicted by assessing consumerdiet imbalances, but provided more detailed information on co-limiting nutrients. While the fatty acid deficiency of the cyanobacterium appeared to be of minor importance, the addition of both cholesterol and certain amino acids (leucine and isoleucine) improved population growth rates of rotifers, indicating a simultaneous limitation by sterols and amino acids. Our results add to growing evidence that consumers frequently face multiple nutrient limitations and suggest that the concept of co-limitation has to be considered in studies assessing nutrient-limited growth responses of consumers.}, language = {en} } @masterthesis{Kreibich2015, type = {Bachelor Thesis}, author = {Kreibich, Christoph}, title = {Erucas{\"a}ure in Brassica napus L. - ein ph{\"a}notypisches Merkmal im Genetikunterricht und ihr Nachweis mit Hilfe von Papierchromatographie}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93341}, school = {Universit{\"a}t Potsdam}, pages = {II, 35}, year = {2015}, abstract = {Erucic acid is a mono-unsaturated fatty acid that is naturally found in large quantities in seeds of rapeseed (Brassica napus L.) and other Brassica species. Erucic acid represents an important resource in the industry, however, due to its injurious effects on the heart muscle, this fatty acid is considered to be nutritionally harmful. Therefore, new high quality rapeseed cultivars were bred in order to eliminate the content of erucic acid in rapeseed oil at the end of the 20th century. In the breeding process, paper chromatography was used for the distinction between seeds with high and low content of erucic acid. Here, this outdated method was revised and optimized for educational purposes. By means of paper chromatography the qualitative content of erucic acid and four other unsaturated fatty acids was analyzed in rapeseed and linseed. The character 'erucic acid content', determined by two additive genes, can be used as a practical example of a phenotypic marker in school lessons, for instance, in the course 'achievement of plant breeding'. Thus, this qualitative analysis of erucic acid content enables the teacher to connect classical genetics with modern methods of plant genetics.}, language = {de} } @article{KamranfarXueTohgeetal.2018, author = {Kamranfar, Iman and Xue, Gang-Ping and Tohge, Takayuki and Sedaghatmehr, Mastoureh and Fernie, Alisdair R. and Balazadeh, Salma and Mueller-Roeber, Bernd}, title = {Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence}, series = {New phytologist : international journal of plant science}, volume = {218}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.15127}, pages = {1543 -- 1557}, year = {2018}, abstract = {Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy.}, language = {en} }