@misc{DiFlorioBruendermannYadavallietal.2013, author = {Di Florio, Giuseppe and Br{\"u}ndermann, Erik and Yadavalli, Nataraja Sekhar and Santer, Svetlana and Havenith, Martina}, title = {Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95233}, pages = {1544 -- 1554}, year = {2013}, abstract = {We have used polarized confocal Raman microspectroscopy and scanning near-field optical microscopy with a resolution of 60 nm to characterize photoinscribed grating structures of azobenzene doped polymer films on a glass support. Polarized Raman microscopy allowed determining the reorientation of the chromophores as a function of the grating phase and penetration depth of the inscribing laser in three dimensions. We found periodic patterns, which are not restricted to the surface alone, but appear also well below the surface in the bulk of the material. Near-field optical microscopy with nanoscale resolution revealed lateral two-dimensional optical contrast, which is not observable by atomic force and Raman microscopy.}, language = {en} } @phdthesis{Koelsch2014, author = {K{\"o}lsch, Jonas David}, title = {Entwicklung neuer farbstoffmarkierter Polymere zur Visualisierung des LCST-Phasen{\"u}bergangs in w{\"a}ssriger L{\"o}sung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72531}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 147}, year = {2014}, abstract = {Ziel der Arbeit war die Entwicklung von farbstoffmarkierten Polymeren, die einen temperaturgetriebenen Kn{\"a}uel-Kollaps-Phasen{\"u}bergang in w{\"a}ssriger L{\"o}sung ("thermo-responsive Polymere") zeigen und diesen in ein optisches Signal {\"u}bersetzen k{\"o}nnen. Solche Polymere unterliegen innerhalb eines kleinen Temperaturintervalls einer massiven {\"A}nderung ihres Verhaltens, z B. ihrer Konformation und ihres Quellungsgrads. Diese {\"A}nderungen sind mit einem Wechsel der L{\"o}seeigenschaften von hydrophil zu hydrophob verbunden. Als Matrixpolymere wurden Poly-N-isopropylacrylamid (polyNIPAm), Poly(oligoethylen-glykolacrylat) (polyOEGA) und Poly(oligoethylenglykolmethacrylat) (polyOEGMA) ein-gesetzt, in die geeignete Farbstoffen durch Copolymerisation eingebaut wurden. Als besonders geeignet, um den Phasen{\"u}bergang in ein optisches Signal zu {\"u}bersetzen, erwiesen sich hierf{\"u}r kompakte, solvatochrome Cumarin- und Naphthalimidderivate. Diese beeintr{\"a}chtigten weder das Polymerisationsverhalten noch den Phasen{\"u}bergang, reagierten aber sowohl bez{\"u}glich Farbe als auch Fluoreszenz stark auf die Polarit{\"a}t des L{\"o}semittels. Weiterhin wurden Systeme entwickelt, die mittels Energietransfer (FRET) ein an den Phasen{\"u}bergang gekoppeltes optisches Signal erzeugen. Hierbei wurde ein Cumarin als Donor- und ein Polythiophen als Akzeptorfarbstoff eingesetzt. Es zeigte sich, dass trotz scheinbarer {\"A}hnlichkeit bestimmte Polymere ausgepr{\"a}gt auf einen Temperaturstimulus mit {\"A}nderung ihrer spektralen Eigenschaften reagieren, andere aber nicht. Hierf{\"u}r wurden die molekularen Ursachen untersucht. Als wahrscheinliche Gr{\"u}nde f{\"u}r das Ausbleiben einer spektralen {\"A}nderung in Oligo(ethylenglykol)-basierten Polymeren sind zum einen die fehlende Dehydratationseffektivit{\"a}t infolge des Fehlens eines selbstgen{\"u}genden Wasserstoffbr{\"u}ckenbindungsmotivs zu nennen und zum anderen die sterische Abschirmung der Farbstoffe durch die Oligo(ethylenglykol)-Seitenketten. Als Prinzipbeweis f{\"u}r die N{\"u}tzlichkeit solcher Systeme f{\"u}r die Bioanalytik wurde ein System entwickelt, dass die L{\"o}slichkeitseigenschaft eines thermoresponsiven Polymers durch Antik{\"o}rper-Antigen-Reaktion {\"a}nderte. Die Bindung selbst kleiner Mengen eines Antik{\"o}rpers ließ sich so direkt optisch auslesen und war bereits mit dem bloßen Auge zu erkennen.}, language = {de} } @article{ProkopovicDuschlVolodkin2015, author = {Prokopovic, Vladimir Z. and Duschl, Claus and Volodkin, Dmitry}, title = {Hyaluronic Acid/Poly-l-Lysine Multilayers as Reservoirs for Storage and Release of Small Charged Molecules}, series = {Macromolecular bioscience}, volume = {15}, journal = {Macromolecular bioscience}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201500093}, pages = {1357 -- 1363}, year = {2015}, abstract = {Polyelectrolyte multilayer films are nowadays very attractive for bioapplications due to their tunable properties and ability to control cellular response. Here we demonstrate that multilayers made of hyaluronic acid and poly-l-lysine act as high-capacity reservoirs for small charged molecules. Strong accumulation within the film is explained by electrostatically driven binding to free charges of polyelectrolytes. Binding and release mechanisms are discussed based on charge balance and polymer dynamics in the film. Our results show that transport of molecules through the film-solution interface limits the release rate. The multilayers might serve as an effective platform for drug delivery and tissue engineering due to high potential for drug loading and controlled release.}, language = {en} } @phdthesis{Haubitz2021, author = {Haubitz, Toni}, title = {Transient absorption spectroscopy}, doi = {10.25932/publishup-53509}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535092}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 176}, year = {2021}, abstract = {The optical properties of chromophores, especially organic dyes and optically active inorganic molecules, are determined by their chemical structures, surrounding media, and excited state behaviors. The classical optical go-to techniques for spectroscopic investigations are absorption and luminescence spectroscopy. While both techniques are powerful and easy to apply spectroscopic methods, the limited time resolution of luminescence spectroscopy and its reliance on luminescent properties can make its application, in certain cases, complex, or even impossible. This can be the case when the investigated molecules do not luminesce anymore due to quenching effects, or when they were never luminescent in the first place. In those cases, transient absorption spectroscopy is an excellent and much more sophisticated technique to investigate such systems. This pump-probe laser-spectroscopic method is excellent for mechanistic investigations of luminescence quenching phenomena and photoreactions. This is due to its extremely high time resolution in the femto- and picosecond ranges, where many intermediate or transient species of a reaction can be identified and their kinetic evolution can be observed. Furthermore, it does not rely on the samples being luminescent, due to the active sample probing after excitation. In this work it is shown, that with transient absorption spectroscopy it was possible to identify the luminescence quenching mechanisms and thus luminescence quantum yield losses of the organic dye classes O4-DBD, S4-DBD, and pyridylanthracenes. Hence, the population of their triplet states could be identified as the competitive mechanism to their luminescence. While the good luminophores O4-DBD showed minor losses, the S4-DBD dye luminescence was almost entirely quenched by this process. However, for pyridylanthracenes, this phenomenon is present in both the protonated and unprotonated forms and moderately effects the luminescence quantum yield. Also, the majority of the quenching losses in the protonated forms are caused by additional non-radiative processes introduced by the protonation of the pyridyl rings. Furthermore, transient absorption spectroscopy can be applied to investigate the quenching mechanisms of uranyl(VI) luminescence by chloride and bromide. The reduction of the halides by excited uranyl(VI) leads to the formation of dihalide radicals X^(·-2). This excited state redox process is thus identified as the quenching mechanism for both halides, and this process, being diffusion-limited, can be suppressed by cryogenically freezing the samples or by observing these interactions in media with a lower dielectric constant, such as ACN and acetone.}, language = {en} }