@article{KoumarelasJiangNaumann2020, author = {Koumarelas, Ioannis and Jiang, Lan and Naumann, Felix}, title = {Data preparation for duplicate detection}, series = {Journal of data and information quality : (JDIQ)}, volume = {12}, journal = {Journal of data and information quality : (JDIQ)}, number = {3}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {1936-1955}, doi = {10.1145/3377878}, pages = {24}, year = {2020}, abstract = {Data errors represent a major issue in most application workflows. Before any important task can take place, a certain data quality has to be guaranteed by eliminating a number of different errors that may appear in data. Typically, most of these errors are fixed with data preparation methods, such as whitespace removal. However, the particular error of duplicate records, where multiple records refer to the same entity, is usually eliminated independently with specialized techniques. Our work is the first to bring these two areas together by applying data preparation operations under a systematic approach prior to performing duplicate detection.
Our process workflow can be summarized as follows: It begins with the user providing as input a sample of the gold standard, the actual dataset, and optionally some constraints to domain-specific data preparations, such as address normalization. The preparation selection operates in two consecutive phases. First, to vastly reduce the search space of ineffective data preparations, decisions are made based on the improvement or worsening of pair similarities. Second, using the remaining data preparations an iterative leave-one-out classification process removes preparations one by one and determines the redundant preparations based on the achieved area under the precision-recall curve (AUC-PR). Using this workflow, we manage to improve the results of duplicate detection up to 19\% in AUC-PR.}, language = {en} } @phdthesis{Koumarelas2020, author = {Koumarelas, Ioannis}, title = {Data preparation and domain-agnostic duplicate detection}, doi = {10.25932/publishup-48913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489131}, school = {Universit{\"a}t Potsdam}, pages = {x, 97}, year = {2020}, abstract = {Successfully completing any data science project demands careful consideration across its whole process. Although the focus is often put on later phases of the process, in practice, experts spend more time in earlier phases, preparing data, to make them consistent with the systems' requirements or to improve their models' accuracies. Duplicate detection is typically applied during the data cleaning phase, which is dedicated to removing data inconsistencies and improving the overall quality and usability of data. While data cleaning involves a plethora of approaches to perform specific operations, such as schema alignment and data normalization, the task of detecting and removing duplicate records is particularly challenging. Duplicates arise when multiple records representing the same entities exist in a database. Due to numerous reasons, spanning from simple typographical errors to different schemas and formats of integrated databases. Keeping a database free of duplicates is crucial for most use-cases, as their existence causes false negatives and false positives when matching queries against it. These two data quality issues have negative implications for tasks, such as hotel booking, where users may erroneously select a wrong hotel, or parcel delivery, where a parcel can get delivered to the wrong address. Identifying the variety of possible data issues to eliminate duplicates demands sophisticated approaches. While research in duplicate detection is well-established and covers different aspects of both efficiency and effectiveness, our work in this thesis focuses on the latter. We propose novel approaches to improve data quality before duplicate detection takes place and apply the latter in datasets even when prior labeling is not available. Our experiments show that improving data quality upfront can increase duplicate classification results by up to 19\%. To this end, we propose two novel pipelines that select and apply generic as well as address-specific data preparation steps with the purpose of maximizing the success of duplicate detection. Generic data preparation, such as the removal of special characters, can be applied to any relation with alphanumeric attributes. When applied, data preparation steps are selected only for attributes where there are positive effects on pair similarities, which indirectly affect classification, or on classification directly. Our work on addresses is twofold; first, we consider more domain-specific approaches to improve the quality of values, and, second, we experiment with known and modified versions of similarity measures to select the most appropriate per address attribute, e.g., city or country. To facilitate duplicate detection in applications where gold standard annotations are not available and obtaining them is not possible or too expensive, we propose MDedup. MDedup is a novel, rule-based, and fully automatic duplicate detection approach that is based on matching dependencies. These dependencies can be used to detect duplicates and can be discovered using state-of-the-art algorithms efficiently and without any prior labeling. MDedup uses two pipelines to first train on datasets with known labels, learning to identify useful matching dependencies, and then be applied on unseen datasets, regardless of any existing gold standard. Finally, our work is accompanied by open source code to enable repeatability of our research results and application of our approaches to other datasets.}, language = {en} } @phdthesis{Jiang2022, author = {Jiang, Lan}, title = {Discovering metadata in data files}, doi = {10.25932/publishup-56620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566204}, school = {Universit{\"a}t Potsdam}, pages = {x, ii, 117}, year = {2022}, abstract = {It is estimated that data scientists spend up to 80\% of the time exploring, cleaning, and transforming their data. A major reason for that expenditure is the lack of knowledge about the used data, which are often from different sources and have heterogeneous structures. As a means to describe various properties of data, metadata can help data scientists understand and prepare their data, saving time for innovative and valuable data analytics. However, metadata do not always exist: some data file formats are not capable of storing them; metadata were deleted for privacy concerns; legacy data may have been produced by systems that were not designed to store and handle meta- data. As data are being produced at an unprecedentedly fast pace and stored in diverse formats, manually creating metadata is not only impractical but also error-prone, demanding automatic approaches for metadata detection. In this thesis, we are focused on detecting metadata in CSV files - a type of plain-text file that, similar to spreadsheets, may contain different types of content at arbitrary positions. We propose a taxonomy of metadata in CSV files and specifically address the discovery of three different metadata: line and cell type, aggregations, and primary keys and foreign keys. Data are organized in an ad-hoc manner in CSV files, and do not follow a fixed structure, which is assumed by common data processing tools. Detecting the structure of such files is a prerequisite of extracting information from them, which can be addressed by detecting the semantic type, such as header, data, derived, or footnote, of each line or each cell. We propose the supervised- learning approach Strudel to detect the type of lines and cells. CSV files may also include aggregations. An aggregation represents the arithmetic relationship between a numeric cell and a set of other numeric cells. Our proposed AggreCol algorithm is capable of detecting aggregations of five arithmetic functions in CSV files. Note that stylistic features, such as font style and cell background color, do not exist in CSV files. Our proposed algorithms address the respective problems by using only content, contextual, and computational features. Storing a relational table is also a common usage of CSV files. Primary keys and foreign keys are important metadata for relational databases, which are usually not present for database instances dumped as plain-text files. We propose the HoPF algorithm to holistically detect both constraints in relational databases. Our approach is capable of distinguishing true primary and foreign keys from a great amount of spurious unique column combinations and inclusion dependencies, which can be detected by state-of-the-art data profiling algorithms.}, language = {en} } @phdthesis{Vitagliano2024, author = {Vitagliano, Gerardo}, title = {Modeling the structure of tabular files for data preparation}, doi = {10.25932/publishup-62435}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624351}, school = {Universit{\"a}t Potsdam}, pages = {ii, 114}, year = {2024}, abstract = {To manage tabular data files and leverage their content in a given downstream task, practitioners often design and execute complex transformation pipelines to prepare them. The complexity of such pipelines stems from different factors, including the nature of the preparation tasks, often exploratory or ad-hoc to specific datasets; the large repertory of tools, algorithms, and frameworks that practitioners need to master; and the volume, variety, and velocity of the files to be prepared. Metadata plays a fundamental role in reducing this complexity: characterizing a file assists end users in the design of data preprocessing pipelines, and furthermore paves the way for suggestion, automation, and optimization of data preparation tasks. Previous research in the areas of data profiling, data integration, and data cleaning, has focused on extracting and characterizing metadata regarding the content of tabular data files, i.e., about the records and attributes of tables. Content metadata are useful for the latter stages of a preprocessing pipeline, e.g., error correction, duplicate detection, or value normalization, but they require a properly formed tabular input. Therefore, these metadata are not relevant for the early stages of a preparation pipeline, i.e., to correctly parse tables out of files. In this dissertation, we turn our focus to what we call the structure of a tabular data file, i.e., the set of characters within a file that do not represent data values but are required to parse and understand the content of the file. We provide three different approaches to represent file structure, an explicit representation based on context-free grammars; an implicit representation based on file-wise similarity; and a learned representation based on machine learning. In our first contribution, we use the grammar-based representation to characterize a set of over 3000 real-world csv files and identify multiple structural issues that let files deviate from the csv standard, e.g., by having inconsistent delimiters or containing multiple tables. We leverage our learnings about real-world files and propose Pollock, a benchmark to test how well systems parse csv files that have a non-standard structure, without any previous preparation. We report on our experiments on using Pollock to evaluate the performance of 16 real-world data management systems. Following, we characterize the structure of files implicitly, by defining a measure of structural similarity for file pairs. We design a novel algorithm to compute this measure, which is based on a graph representation of the files' content. We leverage this algorithm and propose Mondrian, a graphical system to assist users in identifying layout templates in a dataset, classes of files that have the same structure, and therefore can be prepared by applying the same preparation pipeline. Finally, we introduce MaGRiTTE, a novel architecture that uses self-supervised learning to automatically learn structural representations of files in the form of vectorial embeddings at three different levels: cell level, row level, and file level. We experiment with the application of structural embeddings for several tasks, namely dialect detection, row classification, and data preparation efforts estimation. Our experimental results show that structural metadata, either identified explicitly on parsing grammars, derived implicitly as file-wise similarity, or learned with the help of machine learning architectures, is fundamental to automate several tasks, to scale up preparation to large quantities of files, and to provide repeatable preparation pipelines.}, language = {en} }