@article{SoyezReinhold2012, author = {Soyez, Konrad and Reinhold, J{\"u}rgen}, title = {Biowaste treatment - recycling potential for humus reproduction}, series = {Chemie - Ingenieur - Technik}, volume = {84}, journal = {Chemie - Ingenieur - Technik}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201100247}, pages = {991 -- 998}, year = {2012}, abstract = {The majority of the annually accumulated 9 million t of organics in municipal solid waste is recycled. Amongst the technological options composting is most important. 15\% are treated by digestion and result in both biogas as a renewable energy source and organic residues. Compost contains considerable amounts of minerals and organic carbon which can substitute fertilizers including organic compounds. Application of compost for the reproduction of humus in soils is its most important effect. Scientifically, the applicability of the humus balancing method developed by VDLUFA is proven. It balances input and output of organic carbon during cultivation and harvest. Optimum level of humus which is a specific fixed value for each type of soils is therefore realized. An energy humus index is proposed, which may indicate preferred usage of organics as fertilizer or renewable energy source.}, language = {de} } @article{MaesBlondeelPerringetal.2019, author = {Maes, Sybryn L. and Blondeel, Haben and Perring, Michael P. and Depauw, Leen and Brumelis, Guntis and Brunet, J{\"o}rg and Decocq, Guillaume and den Ouden, Jan and Haerdtle, Werner and Hedl, Radim and Heinken, Thilo and Heinrichs, Steffi and Jaroszewicz, Bogdan and Kirby, Keith J. and Kopecky, Martin and Malis, Frantisek and Wulf, Monika and Verheyen, Kris}, title = {Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests}, series = {Forest ecology and management}, volume = {433}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2018.10.056}, pages = {405 -- 418}, year = {2019}, abstract = {Topsoil conditions in temperate forests are influenced by several soil-forming factors, such as canopy composition (e.g. through litter quality), land-use history, atmospheric deposition, and the parent material. Many studies have evaluated the effects of single factors on physicochemical topsoil conditions, but few have assessed the simultaneous effects of multiple drivers. Here, we evaluate the combined effects of litter quality, land-use history (past land cover as well as past forest management), and atmospheric deposition on several physicochemical topsoil conditions of European temperate deciduous forest soils: bulk density, proportion of exchangeable base cations, carbon/nitrogen-ratio (C/N), litter mass, bio-available and total phosphorus, pH(KCI)and soil organic matter. We collected mineral soil and litter layer samples, and measured site characteristics for 190 20 x 20 m European mixed forest plots across gradients of litter quality (derived from the canopy species composition) and atmospheric deposition, and for different categories of past land cover and past forest management. We accounted for the effects of parent material on topsoil conditions by clustering our plots into three soil type groups based on texture and carbonate concentration. We found that litter quality was a stronger driver of topsoil conditions compared to land-use history or atmospheric deposition, while the soil type also affected several topsoil conditions here. Plots with higher litter quality had soils with a higher proportion of exchangeable base cations, and total phosphorus, and lower C/N-ratios and litter mass. Furthermore, the observed litter quality effects on the topsoil were independent from the regional nitrogen deposition or the soil type, although the soil type likely (co)-determined canopy composition and thus litter quality to some extent in the investigated plots. Litter quality effects on topsoil phosphorus concentrations did interact with past land cover, highlighting the need to consider land-use history when evaluating canopy effects on soil conditions. We conclude that forest managers can use the canopy composition as an important tool for influencing topsoil conditions, although soil type remains an important factor to consider.}, language = {en} } @article{IturriFunkSommeretal.2022, author = {Iturri, Laura Antonela and Funk, Roger and Sommer, Michael and Buschiazzo, Daniel}, title = {Transport preferences of P forms in wind-blown sediments of two susceptible soils}, series = {Aeolian research : an international journal on wind erosion research / International Society of Aeolian Research}, volume = {55}, journal = {Aeolian research : an international journal on wind erosion research / International Society of Aeolian Research}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1875-9637}, doi = {10.1016/j.aeolia.2022.100776}, pages = {9}, year = {2022}, abstract = {Wind erosion of agricultural soils affects their stock of essential elements for plants, like phosphorus (P). It is known that the composition of the eroded sediments varies with height, according to the size and density of the transported substances. Aim of this study was to analyze the concentration and enrichment ratios of P forms in sediments transported by the wind. A wind-tunnel study was performed on a sandy-and a sandy loam soil in order to measure P forms concentrations in the saltating sediments. P concentrations were also measured in the particulate matter (PM) of each soil, gained with the Easy Dust Generator. In both soils, inorganic-(Pi) and organic P (Po) were preferentially transported in PM, with enrichment ratios of 1.8 and 5.5, respectively. Nevertheless, a Pi/Po of 0.9 indicated that the accumulation of the minor Po in PM was more pronounced than Pi. This agrees with P-rich light and easily erodible organic compounds, almost exclusively accumulated in PM, and in relatively heavy and less erodible minerals, like apatites, in lower height sediments. Labile P (Pl) was preferentially transported in saltating sediments of both soils. This was attributed to the selective Bray \& Kurtz I's extraction of the abundant inorganic P forms of these sediments. Total P (Pt) copied the transport trends of Pi, the major form. According to the transporting trends, Pi and Po would be re-sedimented at longer distances from the source than Pl. Outcomes become useful for modeling the influence of wind erosion on P cycling.}, language = {en} }