@article{RoveratoLarreaCasadoetal.2018, author = {Roverato, Matteo and Larrea, Patricia and Casado, Ismael and Mulas, Maurizio and Bejar, Gustavo and Bowman, Luke}, title = {Characterization of the Cubilche debris avalanche deposit, a controversial case from the northern Andes, Ecuador}, series = {Journal of volcanology and geothermal research}, volume = {360}, journal = {Journal of volcanology and geothermal research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0377-0273}, doi = {10.1016/j.jvolgeores.2018.07.006}, pages = {22 -- 35}, year = {2018}, abstract = {In areas characterized by many volcanoes, identifying the source of a deposit may not be trivial. This becomes much more complicated when looking for the source of a debris avalanche deposit (DAD), the common products of catastrophic volcanic edifice collapses. To overcome this problem, in this work a methodology is proposed based on the integration of texture features and areal distribution of the deposit, comparison between the petrography of the coarser clasts within the DAD and of the proximal products, grain-size analysis, and the volumetric estimations of the deposit and the volume missing from the volcanic edifice. This methodology has been tested to a DAD occurred near the city of Ibarra (Imbabura Province; Northern Ecuador), having a controversial source. Two main volcanic edifice are located in proximity of the DAD, the Cubilche volcano (3826 m.a.s.l.), located immediately south of and east of the colossal dormant Imbabura volcano. The former displays a sharp horseshoe shaped scar towards the north and inside this post-collapse edifice, that we name old Cubilche volcano (OCV), is located the young Cubilche volcano (YCV) that refilled a portion of the collapse scar and partially covered the southern flank of the OCV. Detailed knowledge of Cubilche volcano is critical because of its close proximity and interspersed activity with Imbabura volcano. In fact, Imbabura most recent edifice was built over the northwestern slope of the OCV and partially covered it. Recent studies linked the studied DAD to both Imbabura volcano as a product of its northern sector collapse, as well as neighboring Cubilche volcano. Our data points to Cubilche as the most likely source for this DAD. A perspective view of the shaded relief image of the present day OCV shows that the morphology of the volcano is well-preserved on its southern, eastern, and western flanks. This allows us to reconstruct the morphology of the OCV previous to the collapse through interpolation of elevation and altitude data of preserved flanks. A DEM of the present day topography was used for extrapolating the morphology. Using similar methodology, the post collapse base of the amphitheater was reconstructed by removing the relief of the present day YCV. The reconstructed topography of the OCV shows that it could have been a symmetric cone, reaching a maximum elevation of similar to 4100 m.a.s.l. with a lack volume of similar to 3.5 km(3). Based on this scenario, the deposit originated from the OCV main collapse should have a volume >3-3.5 km(3) in accordance to the volume calculated for the studied DAD. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{HoehnelReimoldAltenbergeretal.2018, author = {Hoehnel, Desir{\´e}e and Reimold, Wolf Uwe and Altenberger, Uwe and Hofmann, Axel and Mohr-Westheide, Tanja and Oezdemir, Seda and K{\"o}berl, Christian}, title = {Petrographic and Micro-XRF analysis of multiple archean impact-derived spherule layers in drill core CT3 from the northern Barberton Greenstone Belt (South Africa)}, series = {Journal of African earth sciences / Geological Society of Africa}, volume = {138}, journal = {Journal of African earth sciences / Geological Society of Africa}, publisher = {Elsevier Science}, address = {Oxford}, issn = {1464-343X}, doi = {10.1016/j.jafrearsci.2017.11.020}, pages = {264 -- 288}, year = {2018}, abstract = {The Archean spherule layers (SLs) of the Barberton Greenstone Belt (BGB, South Africa) and Pilbara Craton (Australia) are the only known evidence of early, large impact events on Earth. Spherules in these layers have been, alternatively, interpreted as molten impact ejecta, condensation products from an impact vapor cloud, or ejecta from impact craters melted during atmospheric re-entry. Recently, a new exploration drill core (CT3) from the northern BGB revealed 17 SL intersections. Spherules are densely packed, sand-sized, and variably rounded or deformed. The CT3 SLs are intercalated with black and brown shale, and laminated chert. The determination of the original number of impact events that are represented by these multiple SLs is central to the present paper. A comprehensive study of the sedimentary and petrographic characteristics of these SLs involved the determination of the size, shape and types of individual spherules, as well as their mineralogy. CT3 SLs consist of K-feldspar, phyllosilicate, siderite, dolomite, quartz, Ti- and Fe-oxides, as well as apatite. In addition, small amounts of carbonaceous, presumably organic material are observed in several spherules at 145 and 149 m depth. Only Ni-rich Cr-spinel (up to 11 wt\% NiO) crystals, rare zircon grains, and alloys of platinum group elements ± Fe or Ni represent primary phases in these thoroughly altered strata. The 0.3 to 2.6-mm-sized spherules can be classified into four types: 1. Spherules crystallized completely with secondary K-feldspar (subtype 1A) or phyllosilicate (subtype 1B); spherules completely filled with Ti- and Fe-oxides (subtype 1C); spherules containing disordered or radially oriented, fibrous and lath-shaped K-feldspar textures (subtype 1D); or subtype 1B spherules that contain significant Cr-spinel (subtype 1E); 2. zoned compositions with these types 1A and/or 1B minerals (subtype 2A); spherules that contain central or marginal vesicles (subtype 2B); subtype 1B spherules whose rims consist of Ti and Fe-oxides (subtype 2C); 3. deformed spherules (subtype 3A) - of all types; (B) subtype 1B spherules are assimilated into groundmass; (C) open spherules or spherules with collapsed rims; and 4. interconnected spherules of type 1A. A few spherules show botryoidal devitrification textures interpreted to result from rapid cooling/devitrification of former melt droplets. SL 15 at a depth of 145 m is unique in being the only grain-size sorted SL; this bed may have been deposited by fallout through a water column. The SL and their host rocks can be easily distinguished by their significant differences in micro-XRF elemental distribution maps. Depending on which aspects of the SLs are primarily considered (such as similar geochemistry, similar layering, SL occurrences abundant at three different depth intervals), the 17 CT3 SLs can be assigned to three or up to 13 individual impact events. Uncertainty about the actual number of impact events represented remains, however, due to the complex folding deformation observed throughout the drill core.}, language = {en} }