@article{HenkelFredeSchanzeetal.2012, author = {Henkel, Janin and Frede, Katja and Schanze, Nancy and Vogel, Heike and Sch{\"u}rmann, Annette and Spruß, Astrid and Bergheim, Ina and P{\"u}schel, Gerhard Paul}, title = {Stimulation of fat accumulation in hepatocytes by PGE(2)-dependent repression of hepatic lipolysis, beta-oxidation and VLDL-synthesis}, series = {Laboratory investigation : the basic and translational pathology research journal ; an official journal of the United States and Canadian Academy of Pathology}, volume = {92}, journal = {Laboratory investigation : the basic and translational pathology research journal ; an official journal of the United States and Canadian Academy of Pathology}, number = {11}, publisher = {Nature Publ. Group}, address = {New York}, issn = {0023-6837}, doi = {10.1038/labinvest.2012.128}, pages = {1597 -- 1606}, year = {2012}, abstract = {Hepatic steatosis is recognized as hepatic presentation of the metabolic syndrome. Hyperinsulinaemia, which shifts fatty acid oxidation to de novo lipogenesis and lipid storage in the liver, appears to be a principal elicitor particularly in the early stages of disease development. The impact of PGE(2), which has previously been shown to attenuate insulin signaling and hence might reduce insulin-dependent lipid accumulation, on insulin-induced steatosis of hepatocytes was studied. The PGE(2)-generating capacity was enhanced in various obese mouse models by the induction of cyclooxygenase 2 and microsomal prostaglandin E-synthases (mPGES1, mPGES2). PGE(2) attenuated the insulin-dependent induction of SREBP-1c and its target genes glucokinase and fatty acid synthase. Nevertheless, PGE(2) enhanced incorporation of glucose into hepatic triglycerides synergistically with insulin. This was most likely due to a combination of a PGE(2)-dependent repression of (1) the key lipolytic enzyme adipose triglyceride lipase, (2) carnitine-palmitoyltransferase 1, a key regulator of mitochondrial beta-oxidation, and (3) microsomal transfer protein, as well as (4) apolipoprotein B, key components of the VLDL synthesis. Repression of PGC1 alpha, a common upstream regulator of these genes, was identified as a possible cause. In support of this hypothesis, overexpression of PGC1 alpha completely blunted the PGE(2)-dependent fat accumulation. PGE(2) enhanced lipid accumulation synergistically with insulin, despite attenuating insulin signaling and might thus contribute to the development of hepatic steatosis. Induction of enzymes involved in PGE(2) synthesis in in vivo models of obesity imply a potential role of prostanoids in the development of NAFLD and NASH. Laboratory Investigation (2012) 92, 1597-1606; doi:10.1038/labinvest.2012.128; published online 10 September 2012}, language = {en} } @article{NeuschaeferRubeSchraplauScheweetal.2015, author = {Neuschaefer-Rube, Frank and Schraplau, Anne and Schewe, Bettina and Lieske, Stefanie and Kruetzfeldt, Julia-Mignon and Ringel, Sebastian and Henkela, Janin and Birkenfeld, Andreas L. and P{\"u}schel, Gerhard Paul}, title = {Arylhydrocarbon receptor-dependent mIndy (SIc13a5) induction as possible contributor to benzo[a]pyrene-induced lipid accumulation in hepatocytes}, series = {Toxicology}, volume = {337}, journal = {Toxicology}, publisher = {Elsevier}, address = {Clare}, issn = {0300-483X}, doi = {10.1016/j.tox.2015.08.007}, pages = {1 -- 9}, year = {2015}, abstract = {Non-alcoholic fatty liver disease is a growing problem in industrialized and developing countries. Hepatic lipid accumulation is the result of an imbalance between fatty acid uptake, fatty acid de novo synthesis, beta-oxidation and secretion of triglyceride-rich lipoproteins from the hepatocyte. A central regulator of hepatic lipid metabolism is cytosolic citrate that can either be derived from the mitochondrium or be taken up from the blood via the plasma membrane sodium citrate transporter NaCT, the product of the mammalian INDY gene (SLC13A5). mINDY ablation protects against diet-induced steatosis whereas mINDY expression is increased in patients with hepatic steatosis. Diet-induced hepatic steatosis is also enhanced by activation of the arylhyrocarbon receptor (AhR) both in humans and animal models. Therefore, the hypothesis was tested whether the mINDY gene might be a target of the AhR. In accordance with such a hypothesis, the AhR activator benzo[a]pyrene induced the mINDY expression in primary cultures of rat hepatocytes in an AhR-dependent manner. This induction resulted in an increased citrate uptake and citrate incorporation into lipids which probably was further enhanced by the benzo[a]pyrene-dependent induction of key enzymes of fatty acid synthesis. A potential AhR binding site was identified in the mINDY promoter that appears to be conserved in the human promoter. Elimination or mutation of this site largely abolished the activation of the mINDY promoter by benzo[a]pyrene. This study thus identified the mINDY as an AhR target gene. AhR-dependent induction of the mINDY gene might contribute to the development of hepatic steatosis. (C) 2015 Elsevier Ireland Ltd. All rights reserved.}, language = {en} } @misc{HenkelBuchheimDieckowCastroetal.2019, author = {Henkel, Janin and Buchheim-Dieckow, Katja and Castro, Jos{\´e} Pedro and Laeger, Thomas and Wardelmann, Kristina and Kleinridders, Andr{\´e} and J{\"o}hrens, Korinna and P{\"u}schel, Gerhard Paul}, title = {Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {807}, issn = {1866-8372}, doi = {10.25932/publishup-44238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442384}, pages = {17}, year = {2019}, abstract = {Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10\% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.}, language = {en} } @article{HenkelBuchheimDieckowCastroetal.2019, author = {Henkel, Janin and Buchheim-Dieckow, Katja and Castro, Jos{\´e} Pedro and Laeger, Thomas and Wardelmann, Kristina and Kleinridders, Andr{\´e} and J{\"o}hrens, Korinna and P{\"u}schel, Gerhard Paul}, title = {Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11112709}, pages = {15}, year = {2019}, abstract = {Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10\% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.}, language = {en} } @article{JonasSchuermann2020, author = {Jonas, Wenke and Sch{\"u}rmann, Annette}, title = {Genetic and epigenetic factors determining NAFLD risk}, series = {Molecular metabolism}, volume = {50}, journal = {Molecular metabolism}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8778}, doi = {10.1016/j.molmet.2020.101111}, pages = {14}, year = {2020}, abstract = {Background: Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases. Scope of review: We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers. Major conclusion: With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.}, language = {en} } @phdthesis{ColemanMacGregorofInneregny, author = {Coleman Mac Gregor of Inneregny, Charles Dominic}, title = {Rolle von mPGES1-abh{\"a}ngig gebildetem Prostaglandin E2 bei der Ausbildung von Insulinresistenz und nicht-alkoholischer Fettlebererkrankung durch die Modulation der Funktion von Lebermakrophagen}, school = {Universit{\"a}t Potsdam}, pages = {183}, abstract = {Eine St{\"o}rung des Leberstoffwechsels durch die Ausbildung einer Insulinresistenz kann zu Folgeerkrankungen wie der nicht alkoholischen Fettlebererkrankung (NAFLD) bis hin zur Steatohepatitis (NASH) und zur Entwicklung eines Diabetes Typ II f{\"u}hren. Am Krankheitsverlauf sind residente (Kupfferzellen) sowie infiltrierende Makrophagen beteiligt, die durch inflammatorische Stimuli aktiviert werden und zur Progression von Lebererkrankungen f{\"u}hren k{\"o}nnen. Im Rahmen dieser Arbeit wurde die Rolle von mPGES1-abh{\"a}ngig gebildetem Prostaglandin E2 (PGE2) an der Modulation von aktivierten Lebermakrophagen untersucht. Dazu wurden Kupfferzellen und Peritonealmakrophagen (als Modell f{\"u}r infiltrierende Makrophagen) aus Wildtyp und mPGES1-defizienten M{\"a}usen isoliert. Beide Makrophagen­populationen wurden in Zellkulturversuchen mit Lipopolysacchariden (LPS) aktiviert und auf ihre PGE2-Synthese, Genexpression und Sekretion von verschiedenen Cytokinen hin untersucht. Die beiden Makrophagenpopulationen unterschieden sich hinsichtlich der PGE2-Synthese bei mPGSE1-Defizienz. W{\"a}hrend bei Peritonealmakrophagen die LPS-abh{\"a}ngige PGE2-Synthese bei Abwesenheit der mPGES1 fast vollst{\"a}ndig reprimiert war, war bei Kupfferzellen nur eine 25\%ige Abnahme zu verzeichnen. Die postulierte selbstverst{\"a}rkende R{\"u}ckkopplungsschleife von PGE2 im Hinblick auf seine eigene Synthese konnte in isolierten Peritonealmakrophagen, nicht jedoch in Kupfferzellen, best{\"a}tigt werden. In Kupfferzellen f{\"u}hrte exogenes PGE2 ferner zu einer Repression von den pro-inflammatorischen Cytokinen TNFα und IL-1β und f{\"u}r endogenes PGE2 konnte in diesem Zelltyp kein Effekt festgestellt werden. In Peritonealmakrophagen konnte hingegen auch f{\"u}r endogenes PGE2 eine reprimierende Wirkung auf die Expression von TNFα beobachtet werden. Das ist eventuell auf eine h{\"o}here Sensitivit{\"a}t gegen{\"u}ber PGE2 von Peritonealmakrophagen im Vergleich zu Kupfferzellen zur{\"u}ckzuf{\"u}hren. PGE2 wirkte unter den gew{\"a}hlten Versuchsbedingungen in vitro somit eher anti-inflammatorisch. Cholesterolkristalle induzierten in Kupfferzellen die Expression der PGE2-synthetisierenden Enzyme und verschiedener pro-inflammatorische Cytokine. Sie k{\"o}nnten somit zu einer Progression von NAFL zu NASH beitragen. Die Daten aus dieser Arbeit deuten darauf hin, dass PGE2 im Rahmen von entz{\"u}ndlichen Leberver{\"a}nderungen eine eher protektive Wirkung im Hinblick auf die Progression von NAFLD und Insulinresistenz haben k{\"o}nnte.}, language = {de} }