@phdthesis{Walczak2019, author = {Walczak, Ralf}, title = {Molecular design of nitrogen-doped nanoporous noble carbon materials for gas adsorption}, doi = {10.25932/publishup-43524}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435241}, school = {Universit{\"a}t Potsdam}, pages = {II, 155}, year = {2019}, abstract = {In den modernen Gesellschaften f{\"u}hrt ein stetig steigender Energiebedarf zu dem zunehmenden Verbrauch fossiler Brennstoffe wie Kohle, {\"O}l, und Gas. Die Verbrennung dieser kohlenstoffbasierten Brennstoffe f{\"u}hrt unweigerlich zur Freisetzung von Treibhausgasen, vor allem von CO2. Die CO2 Aufnahme unmittelbar bei den Verbrennungsanlagen oder direkt aus der Luft, zusammen mit Regulierung von CO2 produzierenden Energiesektoren (z.B. K{\"u}hlanlagen), k{\"o}nnen den CO2 Ausstoß reduzieren. Allerdings f{\"u}hren insbesondere bei der CO2 Aufnahme die geringen CO2 Konzentrationen und die Aufnahme konkurrierender Gase zu niedrigen CO2 Kapazit{\"a}ten und Selektivit{\"a}ten. Das Zusammenspiel der Gastmolek{\"u}le mit por{\"o}sen Materialien ist dabei essentiell. Por{\"o}se Kohlenstoffmaterialien besitzen attraktive Eigenschaften, unter anderem elektrische Leitf{\"a}higkeit, einstellbare Porosit{\"a}t, als auch chemische und thermische Stabilit{\"a}t. Allerdings f{\"u}hrt die zu geringe Polarisierbarkeit dieser Materialien zu einer geringen Affinit{\"a}t zu polaren Molek{\"u}len (z.B. CO2, H2O, oder NH3). Diese Affinit{\"a}t kann durch den Einbau von Stickstoff erh{\"o}ht werden. Solche Materialien sind oft „edler" als reine Kohlenstoffe, dies bedeutet, dass sie eher oxidierend wirken, als selbst oxidiert zu werden. Die Problematik besteht darin, einen hohen und gleichm{\"a}ßig verteilten Stickstoffgehalt in das Kohlenstoffger{\"u}st einzubauen. Die Zielsetzung dieser Dissertation ist die Erforschung neuer Synthesewege f{\"u}r stickstoffdotierte edle Kohlenstoffmaterialien und die Entwicklung eines grundlegenden Verst{\"a}ndnisses f{\"u}r deren Anwendung in Gasadsorption und elektrochemischer Energiespeicherung. Es wurde eine templatfreie Synthese f{\"u}r stickstoffreiche, edle, und mikropor{\"o}se Kohlenstoffmaterialien durch direkte Kondensation eines stickstoffreichen organischen Molek{\"u}ls als Vorl{\"a}ufer erarbeitet. Dadurch konnten Materialien mit hohen Adsorptionskapazit{\"a}ten f{\"u}r H2O und CO2 bei niedrigen Konzentrationen und moderate CO2/N2 Selektivit{\"a}ten erzielt werden. Um die CO2/N2 Selektivit{\"a}ten zu verbessern, wurden mittels der Einstellung des Kondensationsgrades die molekulare Struktur und Porosit{\"a}t der Kohlenstoffmaterialien kontrolliert. Diese Materialien besitzen die Eigenschaften eines molekularen Siebs f{\"u}r CO2 {\"u}ber N2, das zu herausragenden CO2/N2 Selektivit{\"a}ten f{\"u}hrt. Der ultrahydrophile Charakter der Porenoberfl{\"a}chen und die kleinen Mikroporen dieser Kohlenstoffmaterialien erm{\"o}glichen grundlegende Untersuchungen f{\"u}r die Wechselwirkungen mit Molek{\"u}len die polarer sind als CO2, n{\"a}mlich H2O und NH3. Eine weitere Reihe stickstoffdotierter Kohlenstoffmaterialien wurde durch Kondensation eines konjugierten mikropor{\"o}sen Polymers synthetisiert und deren strukturelle Besonderheiten als Anodenmaterial f{\"u}r die Natriumionen Batterie untersucht. Diese Dissertation leistet einen Beitrag zur Erforschung stickstoffdotierter Kohlenstoffmaterialien und deren Wechselwirkungen mit verschiedenen Gastmolek{\"u}len.}, language = {en} } @phdthesis{Youk2022, author = {Youk, Sol}, title = {Molecular design of heteroatom-doped nanoporous carbons with controlled porosity and surface polarity for gas physisorption and energy storage}, doi = {10.25932/publishup-53909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-539098}, school = {Universit{\"a}t Potsdam}, pages = {145}, year = {2022}, abstract = {The world energy consumption has constantly increased every year due to economic development and population growth. This inevitably caused vast amount of CO2 emission, and the CO2 concentration in the atmosphere keeps increasing with economic growth. To reduce CO2 emission, various methods have been developed but there are still many bottlenecks to be solved. Solvents easily absorbing CO2 such as monoethanol-amine (MEA) and diethanolamine, for example, have limitations of solvent loss, amine degradation, vulnerability to heat and toxicity, and the high cost of regeneration which is especially caused due to chemisorption process. Though some of these drawbacks can be compensated through physisorption with zeolites and metal-organic frameworks (MOFs) by displaying significant adsorption selectivity and capacity even in ambient conditions, limitations for these materials still exist. Zeolites demand relatively high regeneration energy and have limited adsorption kinetics due to the exceptionally narrow pore structure. MOFs have low stability against heat and moisture and high manufacturing cost. Nanoporous carbons have recently received attention as an attractive functional porous material due to their unique properties. These materials are crucial in many applications of modern science and industry such as water and air purification, catalysis, gas separation, and energy storage/conversion due to their high chemical and thermal stability, and in particular electronic conductivity in combination with high specific surface areas. Nanoporous carbons can be used to adsorb environmental pollutants or small gas molecules such as CO2 and to power electrochemical energy storage devices such as batteries and fuel cells. In all fields, their pore structure or electrical properties can be modified depending on their purposes. This thesis provides an in-depth look at novel nanoporous carbons from the synthetic and the application point of view. The interplay between pore structure, atomic construction, and the adsorption properties of nanoporous carbon materials are investigated. Novel nanoporous carbon materials are synthesized by using simple precursor molecules containing heteroatoms through a facile templating method. The affinity, and in turn the adsorption capacity, of carbon materials toward polar gas molecules (CO2 and H2O) is enhanced by the modification of their chemical construction. It is also shown that these properties are important in electrochemical energy storage, here especially for supercapacitors with aqueous electrolytes which are basically based on the physisorption of ions on carbon surfaces. This shows that nanoporous carbons can be a "functional" material with specific physical or chemical interactions with guest species just like zeolites and MOFs. The synthesis of sp2-conjugated materials with high heteroatom content from a mixture of citrazinic acid and melamine in which heteroatoms are already bonded in specific motives is illustrated. By controlling the removal procedure of the salt-template and the condensation temperature, the role of salts in the formation of porosity and as coordination sites for the stabilization of heteroatoms is proven. A high amount of nitrogen of up to 20 wt. \%, oxygen contents of up to 19 wt.\%, and a high CO2/N2 selectivity with maximum CO2 uptake at 273 K of 5.31 mmol g-1 are achieved. Besides, the further controlled thermal condensation of precursor molecules and advanced functional properties on applications of the synthesized porous carbons are described. The materials have different porosity and atomic construction exhibiting a high nitrogen content up to 25 wt. \% as well as a high porosity with a specific surface area of more than 1800 m2 g-1, and a high performance in selective CO2 gas adsorption of 62.7. These pore structure as well as properties of surface affect to water adsorption with a remarkably high Qst of over 100 kJ mol-1 even higher than that of zeolites or CaCl2 well known as adsorbents. In addition to that, the pore structure of HAT-CN-derived carbon materials during condensation in vacuum is fundamentally understood which is essential to maximize the utilization of porous system in materials showing significant difference in their pore volume of 0.5 cm3 g-1 and 0.25 cm3 g-1 without and with vacuum, respectively. The molecular designs of heteroatom containing porous carbon derived from abundant and simple molecules are introduced in the presented thesis. Abundant precursors that already containing high amount of nitrogen or oxygen are beneficial to achieve enhanced interaction with adsorptives. The physical and chemical properties of these heteroatom-doped porous carbons are affected by mainly two parameters, that is, the porosity from the pore structure and the polarity from the atomic composition on the surface. In other words, controlling the porosity as well as the polarity of the carbon materials is studied to understand interactions with different guest species which is a fundamental knowledge for the utilization on various applications.}, language = {en} }