@article{CerantolaWilkeKantoretal.2019, author = {Cerantola, Valerio and Wilke, Max and Kantor, Innokenty and Ismailova, Leyla and Kupenko, Ilya and McCammon, Catherine and Pascarelli, Sakura and Dubrovinsky, Leonid S.}, title = {Experimental investigation of FeCO3 (siderite) stability in Earth's lower mantle using XANES spectroscopy}, series = {American mineralogist : an international journal of earth and planetary materials}, volume = {104}, journal = {American mineralogist : an international journal of earth and planetary materials}, number = {8}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {0003-004X}, doi = {10.2138/am-2019-6428}, pages = {1083 -- 1091}, year = {2019}, abstract = {We studied FeCO3 using Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy at pressures up to 54 GPa and temperatures above 2000 K. First-principles calculations of Fe at the K-edge in FeCO3 were performed to support the interpretation of the XANES spectra. The variation of iron absorption edge features with pressure and temperature in FeCO3 matches well with recently reported observations on FeCO3 at extreme conditions, and provides new insight into the stability of Fe-carbonates in Earth's mantle. Here we show that at conditions of the mid-lower mantle, ~50 GPa and ~2200 K, FeCO3 melts and partially decomposes to high-pressure Fe3O4. Carbon (diamond) and oxygen are also inferred products of the reaction. We constrained the thermodynamic phase boundary between crystalline FeCO3 and melt to be at 51(1) GPa and ~1850 K. We observe that at 54(1) GPa, temperature-induced spin crossover of Fe2+ takes place from low to high spin such that at 1735(100) K, all iron in FeCO3 is in the high-spin state. A comparison between experiment and theory provides a more detailed understanding of FeCO3 decomposition observed in X-ray absorption spectra and helps to explain spectral changes due to pressure-induced spin crossover in FeCO3 at ambient temperature.}, language = {en} } @article{SieberYaxleyHermann2022, author = {Sieber, Melanie Jutta and Yaxley, Greg and Hermann, J{\"o}rg}, title = {COH-fluid induced metasomatism of peridotites in the forearc mantle}, series = {Contributions to Mineralogy and Petrology}, volume = {177}, journal = {Contributions to Mineralogy and Petrology}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0010-7999}, doi = {10.1007/s00410-022-01905-w}, pages = {22}, year = {2022}, abstract = {Devolatilization of subducting lithologies liberates COH-fluids. These may become partially sequestered in peridotites in the slab and the overlying forearc mantle, affecting the cycling of volatiles and fluid mobile elements in subduction zones. Here we assess the magnitudes, timescales and mechanism of channelized injection of COH-fluids doped with Ca-aq(2+), Sr-aq(2+) and Ba-aq(2+) into the dry forearc mantle by performing piston cylinder experiments between 1-2.5 GPa and 600-700 degrees C. Cylindrical cores of natural spinel-bearing harzburgites were used as starting materials. Based on mineral assemblage and composition three reaction zones are distinguishable from the rim towards the core of primary olivine and orthopyroxene grains. Zone 1 contains carbonates + quartz +/- kyanite and zone 2 contains carbonates + talc +/- chlorite. Olivine is further replaced in zone 3 by either antigorite+ magnesite or magnesite +talc within or above antigorite stability, respectively. Orthopyroxene is replaced in zone 3 by talc + chlorite. Mineral assemblages and the compositions of secondary minerals depend on fluid composition and the replaced primary silicate. The extent of alteration depends on fluid CO2 content and fluid/rock-ratio, and is further promoted by fluid permeable reaction zones and reaction driven cracking. Our results show that COH-fluid induced metasomatism of the forearc mantle is self-perpetuating and efficient at sequestering Ca-aq(2+), Sr-aq(2+), Ba-aq(2+) and CO2aq into newly formed carbonates. This process is fast with 90\% of the available C sequestered and nearly 50\% of the initial minerals altered at 650 degrees C, 2 GPa within 55 h. The dissolution of primary silicates under high COH-fluid/rock-ratios, as in channelized fluid flow, enriches SiO2aq in the fluid, while CO2aq is sequestered into carbonates. In an open system, the remaining CO2-depleted, Si-enriched aqueous fluid may cause Si-metasomatism in the forearc further away from the injection of the COH-fluid into peridotite.}, language = {en} }