@misc{CesareAcostaVigilBartolietal.2015, author = {Cesare, Bernardo and Acosta-Vigil, Antonio and Bartoli, Omar and Ferrero, Silvio}, title = {What can we learn from melt inclusions in migmatites and granulites?}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {239}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2015.09.028}, pages = {186 -- 216}, year = {2015}, abstract = {With less than two decades of activity, research on melt inclusions (MI) in crystals from rocks that have undergone crustal anatexis - migmatites and granulites - is a recent addition to crustal petrology and geochemistry. Studies on this subject started with glassy inclusions in anatectic crustal enclaves in lavas, and then progressed to regionally metamorphosed and partially melted crustal rocks, where melt inclusions are normally crystallized into a cryptocrystalline aggregate (nanogranitoid). Since the first paper on melt inclusions in the granulites of the Kerala Khondalite Belt in 2009, reported and studied occurrences are already a few tens. Melt inclusions in migmatites and granulites show many analogies with their more common and long studied counterparts in igneous rocks, but also display very important differences and peculiarities, which are the subject of this review. Microstructurally, melt inclusions in anatectic rocks are small, commonly 10 mu m in diameter, and their main mineral host is peritectic garnet, although several other hosts have been observed. Inclusion contents vary from glass in enclaves that were cooled very rapidly from supersolidus temperatures, to completely crystallized material in slowly cooled regional migmatites. The chemical composition of the inclusions can be analyzed combining several techniques (SEM, EMP, NanoSIMS, LA-ICP-MS), but in the case of crystallized inclusions the experimental remelting under confining pressure in a piston cylinder is a prerequisite. The melt is generally granitic and peraluminous, although granodioritic to trondhjemitic compositions have also been found. Being mostly primary in origin, inclusions attest for the growth of their peritectic host in the presence of melt. As a consequence, the inclusions have the unique ability of preserving information on the composition of primary anatectic crustal melts, before they undergo any of the common following changes in their way to produce crustal magmas. For these peculiar features, melt inclusions in migmatites and granulites, largely overlooked so far, have the potential to become a fundamental tool for the study of crustal melting, crustal differentiation, and even the generation of the continental crust. (C) 2015 The Authors. Published by Elsevier B.V.}, language = {en} } @article{FerreroGodardPalmerietal.2018, author = {Ferrero, Silvio and Godard, Gaston and Palmeri, Rosaria and Wunder, Bernd and Cesare, Bernardo}, title = {Partial melting of ultramafic granulites from Dronning Maud Land, Antarctica}, series = {American mineralogist : an international journal of earth and planetary materials}, volume = {103}, journal = {American mineralogist : an international journal of earth and planetary materials}, number = {4}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {0003-004X}, doi = {10.2138/am-2018-6214}, pages = {610 -- 622}, year = {2018}, abstract = {In the Pan-African belt of the Dronning Maud Land, Antarctica, crystallized melt inclusions (nanogranitoids) occur in garnet from ultramafic granulites. The granulites contain the peak assemblage pargasite+garnet+clinopyroxene with rare relict orthopyroxene and biotite, and retrograde symplectites at contacts between garnet and amphibole. Garnet contains two generations of melt inclusions. Type 1 inclusions, interpreted as primary, are isolated, < 10 mu m in size, and generally have negative crystal shapes. They contain kokchetavite, kumdykolite, and phlogopite, with quartz and zoisite as minor phases, and undevitrified glass was identified in one inclusion. Type 2 inclusions are < 30 mu m in size, secondary, and contain amphibole, feldspars, and zoisite. Type 2 inclusions appear to be the crystallization products of a melt that coexisted with an immiscible CO2-rich fluid. The nanogranitoids were re-homogenized after heating in a piston-cylinder in a series of four experiments to investigate their composition. The conditions ranged between 900 and 950 degrees C at 1.5-2.4 GPa. Type 1 inclusions are trachytic and ultrapotassic, whereas type 2 melts are dacitic to rhyolitic. Thermodynamic modeling of the ultramafic composition in the MnNCKFMASHTO system shows that anatexis occurred at the end of the prograde P-T path, between the solidus (at ca. 860 degrees C-1.4 GPa) and the peak conditions (at ca. 960 degrees C-1.7 GPa). The model melt composition is felsic and similar to that of type 1 inclusions, particularly when the melting degree is low (< 1 mol\%), close to the solidus. However the modeling fails to reproduce the highly potassic signature of the melt and its low H2O content. The combination of petrology, melt inclusion study, and thermodynamic modeling supports the interpretation that melt was produced by anatexis of the ultramafic boudins near peak P-T conditions, and that type 1 inclusions contain the anatectic melt that was present during garnet growth. The felsic, ultrapotassic composition of the primary anatectic melts is compatible with low melting degrees in the presence of biotite and amphibole as reactants.}, language = {en} }