@article{WangWhiteGrimmetal.2018, author = {Wang, Ming and White, Neil and Grimm, Volker and Hofman, Helen and Doley, David and Thorp, Grant and Cribb, Bronwen and Wherritt, Ella and Han, Liqi and Wilkie, John and Hanan, Jim}, title = {Pattern-oriented modelling as a novel way to verify and validate functional-structural plant models}, series = {Annals of botany}, volume = {121}, journal = {Annals of botany}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-7364}, doi = {10.1093/aob/mcx187}, pages = {941 -- 959}, year = {2018}, abstract = {Background and Aims Functional-structural plant (FSP) models have been widely used to understand the complex interactions between plant architecture and underlying developmental mechanisms. However, to obtain evidence that a model captures these mechanisms correctly, a clear distinction must be made between model outputs used for calibration and thus verification, and outputs used for validation. In pattern-oriented modelling (POM), multiple verification patterns are used as filters for rejecting unrealistic model structures and parameter combinations, while a second, independent set of patterns is used for validation. Key Results After calibration, our model simultaneously reproduced multiple observed architectural patterns. The model then successfully predicted, without further calibration, the validation patterns. The model supports the hypothesis that carbon allocation can be modelled as being dependent on current organ biomass and sink strength of each organ type, and also predicted the observed developmental timing of the leaf sink-source transition stage.}, language = {en} } @article{CordeiroAndradeMonteiroetal.2022, author = {Cordeiro, Andre M. and Andrade, Luis and Monteiro, Catarina C. and Leitao, Guilherme and Wigge, Philip Anthony and Saibo, Nelson J. M.}, title = {Phytochrome-interacting factors}, series = {Journal of experimental botany}, volume = {73}, journal = {Journal of experimental botany}, number = {12}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erac142}, pages = {3881 -- 3897}, year = {2022}, abstract = {Review exploring the regulation of PHYTOCHROME-INTERACTING FACTORS by light, their role in abiotic stress tolerance and plant architecture, and their influence on crop productivity. Light is a key determinant for plant growth, development, and ultimately yield. Phytochromes, red/far-red photoreceptors, play an important role in plant architecture, stress tolerance, and productivity. In the model plant Arabidopsis, it has been shown that PHYTOCHROME-INTERACTING FACTORS (PIFs; bHLH transcription factors) act as central hubs in the integration of external stimuli to regulate plant development. Recent studies have unveiled the importance of PIFs in crops. They are involved in the modulation of plant architecture and productivity through the regulation of cell division and elongation in response to different environmental cues. These studies show that different PIFs have overlapping but also distinct functions in the regulation of plant growth. Therefore, understanding the molecular mechanisms by which PIFs regulate plant development is crucial to improve crop productivity under both optimal and adverse environmental conditions. In this review, we discuss current knowledge of PIFs acting as integrators of light and other signals in different crops, with particular focus on the role of PIFs in responding to different environmental conditions and how this can be used to improve crop productivity.}, language = {en} }