@article{GoethelListekMesserschmidtetal.2021, author = {G{\"o}thel, Markus and Listek, Martin and Messerschmidt, Katrin and Schl{\"o}r, Anja and H{\"o}now, Anja and Hanack, Katja}, title = {A New Workflow to Generate Monoclonal Antibodies against Microorganisms}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {1454-5101}, doi = {10.3390/app11209359}, pages = {15}, year = {2021}, abstract = {Monoclonal antibodies are used worldwide as highly potent and efficient detection reagents for research and diagnostic applications. Nevertheless, the specific targeting of complex antigens such as whole microorganisms remains a challenge. To provide a comprehensive workflow, we combined bioinformatic analyses with novel immunization and selection tools to design monoclonal antibodies for the detection of whole microorganisms. In our initial study, we used the human pathogenic strain E. coli O157:H7 as a model target and identified 53 potential protein candidates by using reverse vaccinology methodology. Five different peptide epitopes were selected for immunization using epitope-engineered viral proteins. The identification of antibody-producing hybridomas was performed by using a novel screening technology based on transgenic fusion cell lines. Using an artificial cell surface receptor expressed by all hybridomas, the desired antigen-specific cells can be sorted fast and efficiently out of the fusion cell pool. Selected antibody candidates were characterized and showed strong binding to the target strain E. coli O157:H7 with minor or no cross-reactivity to other relevant microorganisms such as Legionella pneumophila and Bacillus ssp. This approach could be useful as a highly efficient workflow for the generation of antibodies against microorganisms.}, language = {en} } @article{EngelMicheelHanack2022, author = {Engel, Robert and Micheel, Burkhard and Hanack, Katja}, title = {Three-dimensional cell culture approach for in vitro immunization and the production of monoclonal antibodies}, series = {Biomedical materials : materials for tissue engineering and regenerative medicine}, volume = {17}, journal = {Biomedical materials : materials for tissue engineering and regenerative medicine}, number = {5}, publisher = {Inst. of Physics}, address = {London}, issn = {1748-6041}, doi = {10.1088/1748-605X/ac7b00}, pages = {11}, year = {2022}, abstract = {The generation of monoclonal antibodies using an in vitro immunization approach is a promising alternative to conventional hybridoma technology. As recently published, the in vitro approach enables an antigen-specific activation of B lymphocytes within 10-12 d followed by immortalization and subsequent selection of hybridomas. This in vitro process can be further improved by using a three-dimensional surrounding to stabilize the complex microenvironment required for a successful immune reaction. In this study, the suitability of Geltrex as a material for the generation of monoclonal antigen-specific antibodies by in vitro immunization was analyzed. We could show that dendritic cells, B cells, and T cells were able to travel through and interact inside of the matrix, leading to the antigen-specific activation of T and B cells. For cell recovery and subsequent hybridoma technique the suitability of dispase and Corning cell recovery solution (CRS) was compared. In our experiments, the use of dispase resulted in a severe alteration of cell surface receptor expression patterns and significantly higher cell death, while we could not detect an adverse effect of Corning CRS. Finally, an easy approach for high-density cell culture was established by printing an alginate ring inside a cell culture vessel. The ring was filled with Geltrex, cells, and medium to ensure a sufficient supply during cultivation. Using this approach, we were able to generate monoclonal hybridomas that produce antigen-specific antibodies against ovalbumin and the SARS-CoV-2 nucleocapsid protein.}, language = {en} }